Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Construction and properties of some $ 6$-dimensional almost complex manifolds


Author: Eugenio Calabi
Journal: Trans. Amer. Math. Soc. 87 (1958), 407-438
MSC: Primary 53.80; Secondary 57.60
DOI: https://doi.org/10.1090/S0002-9947-1958-0130698-7
MathSciNet review: 0130698
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] E. Calabi and D. C. Spencer, Completely integrable, almost complex manifolds, Bull. Amer. Math. Soc. Abstract 57-3-251.
  • [2] E. Calabi and B. Eckmann, A class of compact, complex manifolds which are not algebraic, Ann. of Math. vol. 58 (1953) pp. 494-500. MR 0057539 (15:244f)
  • [3] É. Cartan, Groupes réels, finis et continus, Ann. École Norm. vol. 31 (1914) pp. 263-355; also: Oeuvres complètes, Partie I, vol. 1, Paris, Gauthier-Villars, 1952, pp. 399-491.
  • [4] S. S. Chern, Characteristic classes in Hermitian manifolds, Ann. of Math. vol. 47 (1946) pp. 85-121. MR 0015793 (7:470b)
  • [5] -, Topics in differential geometry, mimeographed notes, Institute for Advanced Study, Princeton, 1951. MR 0090080 (19:764e)
  • [6] C. Chevalley, Theory of Lie groups I, Princeton University Press, 1946. MR 0082628 (18:583c)
  • [7] B. Eckmann and A. Frölicher, Sur l'intégrabilité des structures presque-complexes, C. R. Acad. Sci. Paris vol. 232 (1951) pp. 2284-2286. MR 0042202 (13:75f)
  • [8] C. Ehresmann, Sur les variétés presque-complexes, Proceedings of the International Congress of Mathematicians, 1950, vol. II, Amer. Math. Society, 1952, pp. 412-419. MR 0045383 (13:574d)
  • [9] C. Ehresmann and P. Libermann, Sur les structures presque hermitiennes isotropes, C. R. Acad. Sci. Paris vol. 232 (1951) pp. 1281-1283. MR 0040790 (12:749h)
  • [10] L. P. Eisenhart, Riemannian geometry, Princeton University Press, 1949. MR 0035081 (11:687g)
  • [11] H. Freudenthal, Oktaven, Ausnahmengruppen und Oktavengeometrie, Utrecht, 1951. MR 0044533 (13:433a)
  • [12] F. Hirzebruch, Über eine Klasse von einfach-zusammenhängenden komplexen Mannigfaltigkeiten, Math. Ann. vol. 124 (1951) pp. 77-86. MR 0045384 (13:574e)
  • [13] -, Problems on differentiable and complex manifolds, Ann. of Math. vol. 60 (1954) pp. 213-236. MR 0066013 (16:518c)
  • [14] W. V. D. Hodge, The theory and applications of harmonic integrals, Cambridge University Press, 1941. MR 0003947 (2:296d)
  • [15] E. Hopf, Über den funktionalen, insbesondere den analytischen Charakter der Lösungen elliptischer Differentialgleichungen zweiter Ordnung, Math. Zeit. vol. 34 (1932) pp. 194-233. MR 1545250
  • [16] H. Hopf, Zur Topologie der komplexen Mannigfaltigkeiten, Studies and Essays presented to R. Courant, New York, 1948, pp. 167-185. MR 0023054 (9:298a)
  • [17] A. Lichnérowicz, Généralisations de la géométrie kählérienne globale, Colloque de géométrie differentielle, Louvain, 1951, pp. 99-122.
  • [18] C. B. Morrey, Second order elliptic systems of differential equations, Contributions to the theory of partial differential equations, Ann. of Math. Studies, no. 33, Princeton University Press, 1954, pp. 101-159. MR 0068091 (16:827e)
  • [19] R. Moufang, Zur Struktur von Alternativkörpern, Math. Ann. vol. 110 (1935) pp. 416-430. MR 1512948
  • [20] L. Nirenberg, On a generalization of quasi-conformal mappings and its application to elliptic partial differential equations, Contributions to the theory of partial differential equations, Ann. of Math. Studies, no. 33, Princeton University Press, 1954, pp. 95-100. MR 0066532 (16:592a)
  • [21] G. de Rham, Variétés différentiables, Paris, Hermann, 1955.
  • [22] H. A. Schwarz, Gesammelte mathematische Abhandlungen, vol. I, Berlin, Springer, 1890.
  • [23] N. Steenrod, The topology of fibre bundles, Princeton University Press, 1951. MR 0039258 (12:522b)
  • [24] D. J. Struik, Differential geometry, Cambridge, Addison-Wesley, 1950. MR 0036551 (12:127f)
  • [25] K. Yano, Some remarks on almost complex manifolds, Proceedings of the International Congress of Mathematicians, 1954, vol. II, p. 268.
  • [26] M. Zorn, Theorie der alternativen Ringe, Abh. Math. Sem. Hamb. Univ. vol. 8 (1931) pp. 123-147.
  • [27] -, Alternativkörper und quadratische Systeme, Abh. Math. Sem. Hamb. Univ. vol. 9 (1933) pp. 395-402.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53.80, 57.60

Retrieve articles in all journals with MSC: 53.80, 57.60


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1958-0130698-7
Article copyright: © Copyright 1958 American Mathematical Society

American Mathematical Society