Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

On the ideal structure of certain semirings and compactification of topological spaces


Author: J. G. Horne
Journal: Trans. Amer. Math. Soc. 90 (1959), 408-430
MSC: Primary 46.00; Secondary 20.00
MathSciNet review: 0108714
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] P. S. Alexandrov, Bikompakte Erweiterungen topologischer Räume, Rec. Math. (Mat. Sbornik) N.S. vol. 5(47) (1939) pp. 403-423. MR 0001914 (1:318b)
  • [2] R. F. Arens and I. Kaplansky, Topological representation of algebras, Trans. Amer. Math. Soc. vol. 63 (1948) pp. 457-581. MR 0025453 (10:7c)
  • [3] G. Birkhoff, Lattice theory, rev. ed. Amer. Math. Soc. Colloquium Publications, vol. 25, New York, 1948. MR 0029876 (10:673a)
  • [4] R. L. Blair, Stone's topology for a binary relation, Duke Math. J. vol. 22 (1955) pp. 271-280. MR 0070146 (16:1138b)
  • [5] P. Civin and B. Yood, Ideals in multiplicative semigroups of continuous functions, Duke Math. J. vol. 23 (1956) pp. 325-334. MR 0078665 (17:1227g)
  • [6] L. Gillman and M. Henriksen, Concerning rings of continuous functions, Trans. Amer. Math. Soc. vol. 77 (1954) pp. 340-362. MR 0063646 (16:156g)
  • [7] M. Henriksen, On the equivalence of the ring, lattice and semigroup of continuous functions, Proc. Amer. Math. Soc. vol. 7 (1956) pp. 959-960. MR 0082490 (18:559a)
  • [8] E. Hewitt, Rings of real-valued continuous functions, I, Trans. Amer. Math. Soc. vol. 64 (1948) pp. 45-99. MR 0026239 (10:126e)
  • [9] N. Jacobson, A topology for the set of primitive ideals in an arbitrary ring, Proc. Nat. Acad. Sci. U.S.A. vol. 31 (1945) pp. 332-338. MR 0013138 (7:110f)
  • [10] I. Kaplansky, Lattices of continuous functions, Bull. Amer. Math. Soc. vol. 53 (1947) pp. 617-623. MR 0020715 (8:587e)
  • [11] V. L. Klee, Convex sets in linear spaces, Duke Math. J. vol. 18 (1951) pp. 443-466. MR 0044014 (13:354f)
  • [12] A. N. Milgram, Multiplicative semigroups of continuous functions, Duke Math. J. vol. 16 (1949) pp. 377-383. MR 0029476 (10:612a)
  • [13] J. von Neumann, On regular rings, Proc. Nat. Acad. Sci. U.S.A. vol. 22 (1936) pp. 707-713.
  • [14] G. Nöebling, Grundlagen der Analytischen Topologie, Springer-Verlag, Berlin, 1954. MR 0068197 (16:844a)
  • [15] T. Shirota, A generalization of a theorem of I. Kaplansky, Osaka Math. J. vol. 4 (1952) pp. 121-132. MR 0052760 (14:669b)
  • [16] W. Słowikowski and W. Zawadowski, A generalization of maximal ideals method of Stone and Gelfand, Fund. Math. vol. 42 (1955) pp. 215-231. MR 0080283 (18:223a)
  • [17] M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. vol. 41 (1937) pp. 375-481. MR 1501905
  • [18] H. Wallman, Lattices and topological spaces, Ann. of Math. vol. 39 (1938) pp. 112-126. MR 1503392

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46.00, 20.00

Retrieve articles in all journals with MSC: 46.00, 20.00


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1959-0108714-9
PII: S 0002-9947(1959)0108714-9
Article copyright: © Copyright 1959 American Mathematical Society