Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

An analysis of the Wang algebra of networks


Author: R. J. Duffin
Journal: Trans. Amer. Math. Soc. 93 (1959), 114-131
MSC: Primary 15.00; Secondary 78.00
DOI: https://doi.org/10.1090/S0002-9947-1959-0109161-6
MathSciNet review: 0109161
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] K. T. Wang, On a new method of analysis of electrical networks, Memoir 2, National Research Institute of Engineering, Academia Sinica, 1934.
  • [2] S. L. Ting, On the general properties of electrical network determinants, Chinese Journal of Physics vol. 1 (1935) pp. 18-40.
  • [3] Chin-Tao Tsai, Short cut methods for expanding the determinants involved in network problems, Chinese Journal of Physics vol. 3 (1939) pp. 148-181.
  • [4] Mong-Kang Ts'en, Indicial impedances and admittances, Chinese Journal of Physics vol. 4 (1940) pp. 89-96.
  • [5] Wei-Liang Chow, On electrical networks, J. Chinese Math. Soc. (1940). 6. H. W. Becker, Wang algebra, 1948, unpublished. MR 0005487 (3:160f)
  • [7] T. Muir, Contributions to the history of determinants (1900-1920), London Blackie, 1930.
  • [8] J. C. Maxwell, A treatise on electricity and magnetism, 3rd. ed., Oxford, Clarendon Press, 1891.
  • [9] R. Bott and R. J. Duffin, On the algebra of networks, Trans. Amer. Math. Soc. vol. 74 (1953) pp. 99-109. MR 0056573 (15:95b)
  • [10] S. MacLane, Grassman algebras and determinants, mimeographed lectures, University of Chicago.
  • [11] J. H. M. Wedderburn, Lectures on matrices, Amer. Math. Soc. Colloquium Publications vol. 17, 1934, p. 16. MR 0168568 (29:5828)
  • [12] W. H. Ingram and C. M. Cramlet, On the foundations of electrical network theory, J. Math. Phys. vol. 23 (1944) pp. 134-155. MR 0015330 (7:403d)
  • [13] J. L. Synge, The fundamental theorem of electrical networks, Quart. Appl. Math. vol. 9 (1951) pp. 113-127. MR 0042958 (13:189e)
  • [14] R. M. Cohn, The resistance of an electrical network, Proc. Amer. Math. Soc. vol. 1 (1950) pp. 316-324. MR 0036696 (12:148b)
  • [15] R. J. Duffin, Nonlinear networks IV, Proc. Amer. Math. Soc. vol. 1 (1950) pp. 233-240. MR 0036695 (12:148a)
  • [16] H. Weyl, Repartición de corriente en una red eléctrica, Rev. Mat. Hisp.-Amer. vol. 5 (1923) pp. 153-164.
  • [17] Philip Franklin, The electric currents in a network, J. Math. Phys. vol. 4 (1925) pp. 97-102.
  • [18] B. D. H. Tellegen, A general network theorem, with applications, Philips Res. Rep. vol. 7 (1952) pp. 259-269. MR 0051142 (14:434f)
  • [19] S. MacLane, A combinatorial condition for planar graphs, Fund. Math. vol. 28 (1936) p. 22.
  • [20] A. Lichnerowicz, Algèbre et analyse linéaires, Paris, Masson, 1947.
  • [21] N. Bourbaki, Éléments de mathématique, Livre II, Algebre, Chapitre III, Paris, Herman, 1948.
  • [22] H. Whitney, Geometric integration theory, Princeton University Press, Princeton, 1957. MR 0087148 (19:309c)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 15.00, 78.00

Retrieve articles in all journals with MSC: 15.00, 78.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1959-0109161-6
Article copyright: © Copyright 1959 American Mathematical Society

American Mathematical Society