Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the Kronecker products of irreducible representations of the $ 2\times 2$ real unimodular group. I


Author: Lajos Pukánszky
Journal: Trans. Amer. Math. Soc. 100 (1961), 116-152
MSC: Primary 22.57
DOI: https://doi.org/10.1090/S0002-9947-1961-0172962-1
MathSciNet review: 0172962
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] V. A. Bargmann, Irreducible unitary representations of the Lorentz group, Ann. of Math. vol. 48 (1947) pp. 568-640. MR 0021942 (9:133a)
  • [2] E. T. Copson, An introduction to the theory of functions of a complex variable, Oxford, Clarendon Press, 1955.
  • [3] I. M. Gel'fand and M. A. Naĭmark, Unitary representations of the Lorentz group, Izv. Acad. Sci. SSSR vol. 11 (1947) pp. 411-504 (Russian). MR 0024440 (9:495a)
  • [4] G. W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. vol. 55 (1952) pp. 101-139. MR 0044536 (13:434a)
  • [5] -, Induced representations of locally compact groups. II, Ann. of Math. vol. 58 (1953) pp. 193-220.
  • [6] F. I. Mautner, Unitary representations of locally compact groups. II, Ann. of Math. vol. 52 (1950) pp. 528-556. MR 0036763 (12:157d)
  • [7] -, On the decomposition of unitary representations of Lie groups, Proc. Amer. Math. Soc. vol. 2 (1951) pp. 480-485. MR 0041856 (13:11b)
  • [8] F. J. Murray and J. von Neumann, On rings of operators. I, Ann. of Math. vol. 37 (1936) pp. 116-229. MR 1503275
  • [9] J. von Neumann, On rings of operators. Reduction Theory, Ann. of Math. vol. 50 (1949) pp. 401-485. MR 0029101 (10:548a)
  • [10] M. A. Naĭmark, Decomposition of a tensorial product of irreducible representations of the proper Lorentz group into irreducible representations, Trudy Moskov. Mat. Obšč. vol. 8 (1959) pp. 121-153. MR 0114139 (22:4966)
  • [11] I. E. Segal, A class of operator algebras, which are determined by groups, Duke Math. J. vol. 18 (1951) pp. 221-265. MR 0045133 (13:534b)
  • [12] -, Hypermaximality of certain operators on Lie groups, Proc. Amer. Math. Soc. vol. 3 (1952) pp. 13-15. MR 0051240 (14:448b)
  • [13] E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations, Oxford, Clarendon Press, 1946. MR 0019765 (8:458d)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22.57

Retrieve articles in all journals with MSC: 22.57


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1961-0172962-1
Article copyright: © Copyright 1961 American Mathematical Society

American Mathematical Society