Oscillation criteria for self-adjoint differential systems

Author:
William T. Reid

Journal:
Trans. Amer. Math. Soc. **101** (1961), 91-106

MSC:
Primary 34.30

DOI:
https://doi.org/10.1090/S0002-9947-1961-0133518-X

MathSciNet review:
0133518

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**N. I. Achieser and I. M. Glasmann,*Theorie der linearen Operatoren im Hilbert-Raum*, Akademie-Verlag, Berlin, 1954. MR**0066560 (16:596f)****[2]**J. H. Barrett,*Two-point boundary value problems and comparison theorems for fourth-order self-adjoint differential equations and second-order matrix differential equations*, Technical Summary Report #150, April, 1960, Mathematics Research Center, U. S. Army.**[3]**G. D. Birkhoff and M. R. Hestenes,*Natural isoperimetric conditions in the calculus of variations*, Duke Math. J. vol. 1 (1935) pp. 198-286. MR**1545876****[4]**G. A. Bliss,*Lectures on the calculus of variations*, University of Chicago Press, 1946. MR**0017881 (8:212e)****[5]**M. Bôcher,*Applications and generalizations of the concept of adjoint systems*, Trans. Amer. Math. Soc. vol. 14 (1913) pp. 403-420. MR**1500954****[6]**M. R. Hestenes,*Applications of the theory of quadratic forms in Hilbert space to the calculus of variations*, Pacific J. Math. vol. 1 (1951) pp. 525-581. MR**0046590 (13:759a)****[7]**H. C. Howard,*Oscillation criteria for fourth-order linear differential equations*, Trans. Amer. Math. Soc. vol. 96 (1960) pp. 296-311. MR**0117379 (22:8159)****[8]**K. S. Hu,*The problem of Bolza and its accessory boundary value problem*(Dissertation, University of Chicago, 1932), Contributions to the Calculus of Variations, University of Chicago Press, 1931-1932, pp. 361-443.**[9]**W. Leighton,*The detection of the oscillation of solutions of a second order linear differential equation*, Duke Math. J. vol. 17 (1950) pp. 57-62. MR**0032065 (11:248c)****[10]**W. Leighton and Z. Nehari,*On the oscillation of solutions of self-adjoint linear differential equations of the fourth order*, Trans. Amer. Math. Soc. vol. 89 (1958) pp. 325-377. MR**0102639 (21:1429)****[11]**M. Morse,*Sufficient conditions in the problem of Lagrange with fixed end points*, Ann. of Math. vol.**32**(1931) pp. 567-577. MR**1503017****[12]**-,*Sufficient conditions in the problem of Lagrange with variable end conditions*, Amer. J. Math. vol.**53**(1931) pp. 517-546. MR**1507924****[13]**-,*The calculus of variations in the large*, Amer. Math. Soc. Colloquium Publications, vol.**18**, 1934.**[14]**Z. Nehari,*Oscillation criteria for second-order linear differential equations*, Trans. Amer. Math. Soc. vol.**85**(1957) pp. 428-445. MR**0087816 (19:415a)****[15]**W. T. Reid,*A boundary value problem associated with the calculus of variations*, Amer. J. Math. vol.**54**(1932) pp. 769-790. MR**1506937****[16]**-,*An integro-differential boundary value problem*, Amer. J. Math. vol.**60**(1938) pp. 257-292. MR**1507311****[17]**-,*A matrix differential equation of Riccati type*, Amer. J. Math. vol.**68**(1946) pp. 237-246; also*Addendum*, ibid., vol.**70**(1948) p. 460. MR**0015610 (7:446a)****[18]**-,*Oscillation criteria for linear differential systems with complex coefficients*, Pacific J. Math. vol.**6**(1956) pp. 733-751. MR**0084655 (18:898a)****[19]**-,*Adjoint linear differential operators*, Trans. Amer. Math. Soc. vol.**85**(1957) pp. 446-461. MR**0088625 (19:550d)****[20]**-,*Principal solutions of non-oscillatory self-adjoint linear differential equations*, Pacific J. Math. vol.**8**(1958) pp. 147-169. MR**0098220 (20:4682)****[21]**H. M. Sternberg and R. L. Sternberg,*A two-point boundary problem for ordinary self-adjoint differential equations of fourth order*, Canad. J. Math. vol.**6**(1954) pp. 416-419. MR**0061738 (15:874c)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
34.30

Retrieve articles in all journals with MSC: 34.30

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1961-0133518-X

Article copyright:
© Copyright 1961
American Mathematical Society