Some imbedding and nonimbedding theorems for manifolds
Author:
Beauregard Stubblefield
Journal:
Trans. Amer. Math. Soc. 103 (1962), 403420
MSC:
Primary 54.78
MathSciNet review:
0143189
Fulltext PDF Free Access
References 
Similar Articles 
Additional Information
 [1]
R.
H. Bing, A decomposition of 𝐸³ into points and tame
arcs such that the decomposition space is topologically different from
𝐸³, Ann. of Math. (2) 65 (1957),
484–500. MR 0092961
(19,1187g)
 [2]
R.
H. Bing, The cartesian product of a certain
nonmanifold and a line is 𝐸₄, Bull. Amer. Math. Soc. 64 (1958), 82–84. MR 0097034
(20 #3514), http://dx.doi.org/10.1090/S000299041958101603
 [3]
K.
Borsuk, On the decomposition of a locally connected compactum into
Cartesian product of a curve and a manifold, Fund. Math.
40 (1953), 140–159. MR 0061819
(15,889d)
 [4]
Schieffelin
Claytor, Topological immersion of Peanian continua in a spherical
surface, Ann. of Math. (2) 35 (1934), no. 4,
809–835. MR
1503198, http://dx.doi.org/10.2307/1968496
 [5]
, Peano continua not imbeddable in a spherical surface, Ann. of Math. 38 (1937), 631646.
 [6]
R.
H. Fox, On a problem of S. Ulam concerning Cartesian products,
Fund. Math. 34 (1947), 278–287. MR 0027502
(10,316a)
 [7]
F.
B. Jones and G.
S. Young, Product spaces in
𝑛manifolds, Proc. Amer. Math. Soc.
10 (1959),
307–308. MR 0105662
(21 #4400), http://dx.doi.org/10.1090/S00029939195901056620
 [8]
Edwin
E. Moise, An indecomposable plane continuum
which is homeomorphic to each of its nondegenerate subcontinua, Trans. Amer. Math. Soc. 63 (1948), 581–594. MR 0025733
(10,56i), http://dx.doi.org/10.1090/S00029947194800257334
 [9]
Edwin
E. Moise, Remarks on the Claytor imbedding theorem, Duke Math.
J. 19 (1952), 199–202. MR 0050879
(14,396f)
 [10]
E. E. Moise and G. S. Young, On imbedding continuous curves in 2manifolds, Bull. Amer. Math. Soc. 54 (1948), 77.
 [11]
R. L. Moore, Concerning triods in the plane and the junction points of plane continua Proc. Nat. Acad. Sci. U.S.A. 14 (1928), 8588.
 [12]
J.
H. C. Whitehead, On the homotopy type of manifolds, Ann. of
Math. (2) 41 (1940), 825–832. MR 0002546
(2,73e)
 [13]
Gail
S. Young Jr., A generalization of Moore’s
theorem on simple triods, Bull. Amer. Math.
Soc. 50 (1944), 714.
MR
0010967 (6,96c), http://dx.doi.org/10.1090/S000299041944082165
 [1]
 R. H. Bing, A decomposition of into points and tame arcs such that the decomposition space is topologically different from , Ann. of Math. 65 (1957), 484500. MR 0092961 (19:1187g)
 [2]
 , The Cartesian product of a certain nonmanifold and a line is , Bull. Amer. Math. Soc. 64 (1958), 8284. MR 0097034 (20:3514)
 [3]
 K. Borsuk, On the decomposition of a locally connected compactum into Cartesian product of a curve and a manifold, Fund. Math. 40 (1953), 140159. MR 0061819 (15:889d)
 [4]
 W. W. S. Claytor, Topological immersion of Peanian continua in a spherical surface, Ann. of Math. 35 (1934), 809835. MR 1503198
 [5]
 , Peano continua not imbeddable in a spherical surface, Ann. of Math. 38 (1937), 631646.
 [6]
 R. H. Fox, On a problem of S. Ulam concerning Cartesian products, Fund. Math. 34 (1947), 278287. MR 0027502 (10:316a)
 [7]
 F. B. Jones and G. S. Young, Product spaces in nmanifolds, Proc. Amer. Math. Soc. 10 (1959), 307308. MR 0105662 (21:4400)
 [8]
 E. E. Moise, An indecomposable plane continuum which is homeomorphic to each of its nondegenerate subcontinua, Trans. Amer. Math. Soc. 63 (1948), 581594. MR 0025733 (10:56i)
 [9]
 , Remarks on the Claytor imbedding theorem, Duke Math. J. 19 (1952), 199202. MR 0050879 (14:396f)
 [10]
 E. E. Moise and G. S. Young, On imbedding continuous curves in 2manifolds, Bull. Amer. Math. Soc. 54 (1948), 77.
 [11]
 R. L. Moore, Concerning triods in the plane and the junction points of plane continua Proc. Nat. Acad. Sci. U.S.A. 14 (1928), 8588.
 [12]
 J. H. C. Whitehead, On the homotopy type of manifolds, Ann. of Math. 41 (1940), 825. MR 0002546 (2:73e)
 [13]
 G. S. Young, Jr., A generalization of Moore's theorem on simple triods, Bull. Amer. Math. Soc. 50 (1944), 714. MR 0010967 (6:96c)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
54.78
Retrieve articles in all journals
with MSC:
54.78
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947196201431895
PII:
S 00029947(1962)01431895
Article copyright:
© Copyright 1962 American Mathematical Society
