Some imbedding and nonimbedding theorems for -manifolds

Author:
Beauregard Stubblefield

Journal:
Trans. Amer. Math. Soc. **103** (1962), 403-420

MSC:
Primary 54.78

MathSciNet review:
0143189

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**R. H. Bing,*A decomposition of 𝐸³ into points and tame arcs such that the decomposition space is topologically different from 𝐸³*, Ann. of Math. (2)**65**(1957), 484–500. MR**0092961****[2]**R. H. Bing,*The cartesian product of a certain non-manifold and a line is 𝐸₄*, Bull. Amer. Math. Soc.**64**(1958), 82–84. MR**0097034**, 10.1090/S0002-9904-1958-10160-3**[3]**K. Borsuk,*On the decomposition of a locally connected compactum into Cartesian product of a curve and a manifold*, Fund. Math.**40**(1953), 140–159. MR**0061819****[4]**Schieffelin Claytor,*Topological immersion of Peanian continua in a spherical surface*, Ann. of Math. (2)**35**(1934), no. 4, 809–835. MR**1503198**, 10.2307/1968496**[5]**-,*Peano continua not imbeddable in a spherical surface*, Ann. of Math.**38**(1937), 631-646.**[6]**R. H. Fox,*On a problem of S. Ulam concerning Cartesian products*, Fund. Math.**34**(1947), 278–287. MR**0027502****[7]**F. B. Jones and G. S. Young,*Product spaces in 𝑛-manifolds*, Proc. Amer. Math. Soc.**10**(1959), 307–308. MR**0105662**, 10.1090/S0002-9939-1959-0105662-0**[8]**Edwin E. Moise,*An indecomposable plane continuum which is homeomorphic to each of its nondegenerate subcontinua*, Trans. Amer. Math. Soc.**63**(1948), 581–594. MR**0025733**, 10.1090/S0002-9947-1948-0025733-4**[9]**Edwin E. Moise,*Remarks on the Claytor imbedding theorem*, Duke Math. J.**19**(1952), 199–202. MR**0050879****[10]**E. E. Moise and G. S. Young,*On imbedding continuous curves in*2-*manifolds*, Bull. Amer. Math. Soc.**54**(1948), 77.**[11]**R. L. Moore,*Concerning triods in the plane and the junction points of plane continua*Proc. Nat. Acad. Sci. U.S.A.**14**(1928), 85-88.**[12]**J. H. C. Whitehead,*On the homotopy type of manifolds*, Ann. of Math. (2)**41**(1940), 825–832. MR**0002546****[13]**Gail S. Young Jr.,*A generalization of Moore’s theorem on simple triods*, Bull. Amer. Math. Soc.**50**(1944), 714. MR**0010967**, 10.1090/S0002-9904-1944-08216-5

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54.78

Retrieve articles in all journals with MSC: 54.78

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1962-0143189-5

Article copyright:
© Copyright 1962
American Mathematical Society