Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Multiplication rings as rings in which ideals with prime radical are primary


Authors: Robert W. Gilmer and Joe Leonard Mott
Journal: Trans. Amer. Math. Soc. 114 (1965), 40-52
MSC: Primary 13.20; Secondary 16.00
DOI: https://doi.org/10.1090/S0002-9947-1965-0171803-X
MathSciNet review: 0171803
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] Y. Akizuki, Bemerkungen über den Aufbau des Nullideals, Proc. Phys.-Math. Soc. Japan 14 (1932), 253-262.
  • [2] K. Asano, Über kommutative Ringe, in denen jedes Ideals als Produkt von Primidealen darstellenbar ist, J. Math. Soc. Japan 1 (1951), 82-90. MR 0043769 (13:313e)
  • [3] I. S. Cohen, Commutative rings with restricted minimum condition, Duke Math. J. 17 (1950), 27-42. MR 0033276 (11:413g)
  • [4] Robert W. Gilmer, Jr., A classical theorem of Noether in ideal theory, Pacific J. Math. 13 (1963), 579-583. MR 0153692 (27:3653)
  • [5] -, Commutative rings containing at most two prime ideals, Michigan Math. J. 10 (1963), 263-268. MR 0155848 (27:5782)
  • [6] -, Eleven nonequivalent conditions on a commutative ring (submitted for publication).
  • [7] -, Extensions of results concerning rings in which semi-primary ideals are primary, Duke Math. J. 31 (1964), 73-78. MR 0162816 (29:120)
  • [8] -, Rings in which semi-primary ideals are primary, Pacific J. Math. 12 (1962), 1273-1276. MR 0158898 (28:2120)
  • [9] W. Krull, Idealtheorie, Chelsea, New York, 1948.
  • [10] -, Idealtheorie in Ringen ohne Enclichkeitsbedingung, Math. Ann. 101 (1929), 729-744. MR 1512564
  • [11] -, Über allgemeine Multiplikationsringe, Tôhoku Math. J. 41 (1936), 320-326.
  • [12] -, Über Laskershe Ringe, Rend. Circ. Mat. Palermo (2) 7 (1958), 155-166. MR 0124350 (23:A1664)
  • [13] -, Über Multiplikationsringe, S.-B. Heidelberger Akad. Wiss. 5 (1925), 13-18.
  • [14] S. Mori, Axiomatische Begrundung des Multiplikationsringe, J. Sci. Hiroshima Univ. Ser. A 3 (1932), 45-59. MR 0042384 (13:101b)
  • [15] -, Über allgemeine Multiplikationsringe. I, J. Sci. Hiroshima Univ. Ser. A. 4 (1934), 1-26.
  • [16] -, Über allgemeine Multiplikationsringe. II, J. Sci. Hiroshima Univ. Ser. A 4 (1934), 99-109.
  • [17] -, Über Idealtheorie der Multiplikationsringe, J. Sci. Hiroshima Univ. Ser. A 19 (1956), 429-437. MR 0085232 (19:8f)
  • [18] -, Struktur der Multiplikationsringe, J. Sci. Hiroshima Univ. Ser. A 16 (1952), 1-11. MR 0060484 (15:676d)
  • [19] Joe Leonard Mott, Equivalent conditions for a ring to be a multiplication ring, Canad. J. Math. 16 (1964), 429-434. MR 0162815 (29:119)
  • [20] N. Nakano, Über die Umkehrbarkeit der Ideale im Integritatsbereiche, Proc. Imp. Acad. Tokyo 19 (1943), 230-234. MR 0014071 (7:236i)
  • [21] O. Zariski and P. Samuel, Commutative algebra, Vol. I, Van Nostrand, Princeton, N. J., 1958. MR 0090581 (19:833e)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 13.20, 16.00

Retrieve articles in all journals with MSC: 13.20, 16.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1965-0171803-X
Article copyright: © Copyright 1965 American Mathematical Society

American Mathematical Society