Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Multiplication rings as rings in which ideals with prime radical are primary


Authors: Robert W. Gilmer and Joe Leonard Mott
Journal: Trans. Amer. Math. Soc. 114 (1965), 40-52
MSC: Primary 13.20; Secondary 16.00
MathSciNet review: 0171803
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] Y. Akizuki, Bemerkungen über den Aufbau des Nullideals, Proc. Phys.-Math. Soc. Japan 14 (1932), 253-262.
  • [2] Keizo Asano, Über kommutative Ringe, in denen jedes Ideal als Produkt von Primidealen darstellbar ist, J. Math. Soc. Japan 3 (1951), 82–90 (German). MR 0043769
  • [3] I. S. Cohen, Commutative rings with restricted minimum condition, Duke Math. J. 17 (1950), 27–42. MR 0033276
  • [4] Robert W. Gilmer, On a classical theorem of Noether in ideal theory, Pacific J. Math. 13 (1963), 579–583. MR 0153692
  • [5] Robert W. Gilmer, Commutative rings containing at most two prime ideals, Michigan Math. J. 10 (1963), 263–268. MR 0155848
  • [6] -, Eleven nonequivalent conditions on a commutative ring (submitted for publication).
  • [7] Robert W. Gilmer Jr., Extension of results concerning rings in which semi-primary ideals are primary, Duke Math. J. 31 (1964), 73–78. MR 0162816
  • [8] Robert W. Gilmer, Rings in which semi-primary ideals are primary, Pacific J. Math. 12 (1962), 1273–1276. MR 0158898
  • [9] W. Krull, Idealtheorie, Chelsea, New York, 1948.
  • [10] Wolfgang Krull, Idealtheorie in Ringen ohne Endlichkeitsbedingung, Math. Ann. 101 (1929), no. 1, 729–744 (German). MR 1512564, 10.1007/BF01454872
  • [11] -, Über allgemeine Multiplikationsringe, Tôhoku Math. J. 41 (1936), 320-326.
  • [12] Wolfgang Krull, Über Laskersche Ringe, Rend. Circ. Mat. Palermo (2) 7 (1958), 155–166 (German). MR 0124350
  • [13] -, Über Multiplikationsringe, S.-B. Heidelberger Akad. Wiss. 5 (1925), 13-18.
  • [14] Shinjiro Mori, Über die Symmetrie des Prädikates “relativ prim.”, J. Sci. Hiroshima Univ. Ser. A. 14 (1950), 102–106 (German). MR 0042384
  • [15] -, Über allgemeine Multiplikationsringe. I, J. Sci. Hiroshima Univ. Ser. A. 4 (1934), 1-26.
  • [16] -, Über allgemeine Multiplikationsringe. II, J. Sci. Hiroshima Univ. Ser. A 4 (1934), 99-109.
  • [17] Shinziro Mori, Über Idealtheorie der Multiplikationsringe, J. Sci. Hiroshima Univ. Ser. A. 19 (1956), 429–437 (German). MR 0085232
  • [18] Shinjiro Mori, Struktur der Multiplikationsringe, J. Sci. Hiroshima Univ. Ser. A. 16 (1952), 1–11 (German). MR 0060484
  • [19] Joe Leonard Mott, Equivalent conditions for a ring to be a multiplication ring, Canad. J. Math. 16 (1964), 429–434. MR 0162815
  • [20] Noboru Nakano, Über die Umkehrbarkeit der Ideale im Integritätsbereiche, Proc. Imp. Acad. Tokyo 19 (1943), 230–234 (German). MR 0014071
  • [21] Oscar Zariski and Pierre Samuel, Commutative algebra, Volume I, The University Series in Higher Mathematics, D. Van Nostrand Company, Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR 0090581

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 13.20, 16.00

Retrieve articles in all journals with MSC: 13.20, 16.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1965-0171803-X
Article copyright: © Copyright 1965 American Mathematical Society