Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The essential spectrum of elliptic differential operators in $ L\sp{p}(R\sb{n})$


Author: Erik Balslev
Journal: Trans. Amer. Math. Soc. 116 (1965), 193-217
MSC: Primary 35.80; Secondary 47.65
DOI: https://doi.org/10.1090/S0002-9947-1965-0190524-0
MathSciNet review: 0190524
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] E. Balslev and T. W. Gamelin, The essential spectrum of a class of ordinary differential operators, Pacific J. Math. (3) 14 (1964), 755-776. MR 0171179 (30:1410)
  • [2] E. Balslev, Perturbation of differential operators, Ph.D. Thesis, Univ. of California, Berkeley, Calif., 1963.
  • [3] M. Š. Birman, On the spectrum of singular boundary value problems, Mat. Sb. (N. S.) 97 (1961), 125-174. MR 0142896 (26:463)
  • [4] I. Brinck, Self-adjointness and spectra of Sturm-Liouville operators, Math. Scand. 7 (1959), 219-239. MR 0112999 (22:3844)
  • [5] F. E. Browder, On the spectral theory of elliptic differential operators. I, Math. Ann. 142 (1961), 22-130. MR 0209909 (35:804)
  • [6] -, Functional analysis and partial differential equations. II, Math. Ann. 145 (1962), 81-226. MR 0136857 (25:318)
  • [7] N. Dunford and J. T. Schwartz, Linear operators. I, II, Interscience, New York, 1958, 1963. MR 0188745 (32:6181)
  • [8] I. C. Gohberg and M. G. Kreĭn, The basic propositions on defect numbers, root numbers and indices of linear operators, Uspehi Mat. Nauk 12 (1957), 43-118; English transl., Amer. Math. Soc. Transl. (2) 13 (1960), 185-264. MR 0113146 (22:3984)
  • [9] T. Ikebe and T. Kato, Uniqueness of the self-adjoint extension of singular elliptic differential operators, Arch. Rational Mech. Anal. 9 (1962), 77-92. MR 0142894 (26:461)
  • [10] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261-322. MR 0107819 (21:6541)
  • [11] N. Nilsson, Essential self-adjointness and the spectral resolution of Hamiltonian operators, Kungl. Fysiogr. Sällsk. Lund Förhandlingar (1) 29 (1959), 1-19. MR 0104901 (21:3652)
  • [12] G. C. Rota, Extension theory of differential operators. I, Comm. Pure Appl. Math. 11 (1958), 23-65. MR 0096852 (20:3334)
  • [13] L. Schwartz, Théorie des distributions. II, Hermann, Paris, 1959.
  • [14] F. Wolf, On the essential spectrum of partial differential boundary problems, Comm. Pure Appl. Math. 12 (1959), 211-228. MR 0107750 (21:6472)
  • [15] F. R. D. Agudo and F. Wolf, Propriétés spectrales de l'opérateur $ \Delta + \sum {_i} {a_i}(\partial /\partial {x_i}) + b$ à coefficients complexes, Atti Acad. Naz. Lincei Rend Cl. Sci. Fis. Mat. Nat. 25 (1958), 273-275. MR 0113026 (22:3867)
  • [16] E. Balslev and C. F. Schubert, Essential spectrum and singular sequences, Pacific J. Math. (to appear).
  • [17] E. Balslev, The essential spectrum of self-adjoint elliptic differential operators in $ {L^2}({R_n})$, Math. Scand. (to appear).
  • [18] P. A. Rejto, On the essential spectrum of the hydrogen energy and related operators, Pacific J. Math. (to appear). MR 0199574 (33:7717)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35.80, 47.65

Retrieve articles in all journals with MSC: 35.80, 47.65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1965-0190524-0
Article copyright: © Copyright 1965 American Mathematical Society

American Mathematical Society