Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the homotopy groups of the exceptional Lie groups


Author: P. G. Kumpel
Journal: Trans. Amer. Math. Soc. 120 (1965), 481-498
MSC: Primary 57.40
DOI: https://doi.org/10.1090/S0002-9947-1965-0192511-5
MathSciNet review: 0192511
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] S. Araki, On the Brouwer degrees of some maps of compact symmetric spaces, Topology Vol. 3, Pergamon, New York, 1965, pp. 281-290. MR 0187252 (32:4705)
  • [2] E. Artin, Geometric algebra, Interscience Tract No. 3, Wiley, New York, 1957. MR 0082463 (18:553e)
  • [3] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. 57 (1953), 115-207. MR 0051508 (14:490e)
  • [4] A. Borel and C. Chevalley, The Betti numbers of the exceptional groups, Mem. Amer. Math. Soc. No. 14 (1955), 1-9. MR 0069180 (16:996e)
  • [5] A. Borel and J. de Siebenthal, Les sous-groupes fermés connexes de rang maximum des groupes de Lie clos, Comment. Math. Helv. 23 (1949-1950), 200-221. MR 0032659 (11:326d)
  • [6] R. Bott, The stable homotopy of the classical groups, Ann. of Math. 70 (1959), 313-337. MR 0110104 (22:987)
  • [7] E. B. Dynkin and A. L. Oniščik, Compact global Lie groups, Uspehi. Mat. Nauk (N.S.) 10 (1955), 3-74; English transl., Amer. Math. Soc. Transl. (2) 21 (1962), 119-192. MR 0075532 (17:762b)
  • [8] B. Harris, Suspensions and characteristic maps for symmetric spaces, Ann. of Math. 76 (1962), 295-305. MR 0149479 (26:6967)
  • [9] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962. MR 0145455 (26:2986)
  • [10] P. Hilton and S. Wiley, Homology theory, Cambridge Univ. Press, New York, 1960.
  • [11] H. Hopf and H. Samelson, Ein Satz über die Wirkungsräume geschlossener Leischer Gruppen, Comment. Math. Helv. 13 (1940-1941), 240-251. MR 0006546 (4:3b)
  • [12] N. Jacobson, Lie algebras, Interscience Tract No. 10, Wiley, New York, 1962. MR 0143793 (26:1345)
  • [13] -, Some groups of transformations defined by Jordan algebras. I, II, III, J. Reine Angew. Math. I: 201 (1959), 178-195, II: 204 (1960), 74-98, III: 207 (1961), 61-85. MR 0106936 (21:5666)
  • [14] J.-P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. 58 (1953), 258-294. MR 0059548 (15:548c)
  • [15] N. E. Steenrod, The topology of fibre bundles, Princeton Univ. Press, Princeton, N. J., 1951. MR 0039258 (12:522b)
  • [16] J. Tits, Une classe d'algèbres de Lie en relation avec les algèbres de Jordan, Nederl. Akad. Wetensch. Proc. Ser. A 65 (1962), 530-535. MR 0146231 (26:3753)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57.40

Retrieve articles in all journals with MSC: 57.40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1965-0192511-5
Article copyright: © Copyright 1965 American Mathematical Society

American Mathematical Society