Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Volterra integral equations in Banach space


Authors: Avner Friedman and Marvin Shinbrot
Journal: Trans. Amer. Math. Soc. 126 (1967), 131-179
MSC: Primary 47.70; Secondary 45.13
DOI: https://doi.org/10.1090/S0002-9947-1967-0206754-7
MathSciNet review: 0206754
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math. 15 (1962), 119-147. MR 0147774 (26:5288)
  • [2] N. Dunford and J. Schwartz, Linear operators, Part I, Interscience, New York, 1964.
  • [3] A. Friedman, On integral equations of Volterra type, J. Analyse Math. 11 (1963), 381-413. MR 0158232 (28:1458)
  • [4] -, Uniqueness of solutions of ordinary differential inequalities in Hilbert space, Arch. Rational Mech. Anal. 17 (1964), 353-357. MR 0171181 (30:1412)
  • [5] -, Periodic behavior of solutions of Volterra integral equations, J. Analyse Math. 15 (1965), 287-303. MR 0187035 (32:4490)
  • [6] -, Differentiability of solutions of ordinary differential equations in Hilbert space, Pacific J. Math. 16 (1966), 267-271. MR 0190494 (32:7906)
  • [7] V. P. Glushko and S. G. Krein, Fractional power of differential operators and inclusion theorems, Dokl. Akad. Nauk SSSR 122 (1958), 963-966. MR 0100144 (20:6578)
  • [8] E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ. Vol. 31, Amer. Math. Soc., Providence, R. I., 1957. MR 0089373 (19:664d)
  • [9] T. Kato, Integration of the equation of evolution in a Banach space, J. Math. Soc. Japan 5 (1953), 208-234. MR 0058861 (15:437b)
  • [10] -, On linear differential equations in Banach spaces, Comm. Pure Appl. Math. 9 (1956), 479-486. MR 0086986 (19:279b)
  • [11] -, Fractional powers of dissipative operators, J. Math. Soc. Japan 13 (1961), 246-274. MR 0138005 (25:1453)
  • [12] H. Komatzu, Abstract analyticity in time and unique continuation property for solutions of parabolic equations, J. Fac. Sci. Univ. Tokyo Sect. I 9 (1961), 1-11. MR 0168937 (29:6193)
  • [13] R. S. Phillips, Perturbation theory for semi-groups of linear operators, Trans. Amer. Math. Soc. 74 (1954), 199-221. MR 0054167 (14:882b)
  • [14] M. Shinbrot and S. Kaniel, The initial value problem for the Navier-Stokes equations, Arch. Rational Mech. Anal. 21 (1966), 270-285. MR 0192215 (33:442)
  • [15] P. E. Sobolevskiĭ, On equations of parabolic type in a Banach space, Trudy Moscov. Mat. Obšč. 10 (1961), 297-350=Amer. Math. Soc. Transl. (2) 49 (1965), 1-62.
  • [16] H. Tanabe, A class of the equations of evolution in a Banach space, Osaka Math. J. 11 (1959), 121-145. MR 0114137 (22:4964)
  • [17] -, Remarks on the equations of evolution in a Banach space, Osaka Math. J. 12 (1960), 145-166. MR 0125454 (23:A2756a)
  • [18] -, On the equations of evolution in a Banach space, Osaka Math. J. 12 (1960), 363-376. MR 0125455 (23:A2756b)
  • [19] E. C. Titchmarsh, Fourier integrals, Oxford Univ. Press, Oxford, 1950.
  • [20] K. Yosida, Fractional powers of infinitesimal generators and the analyticity of semi-groups generated by them, Proc. Japan Acad. 36 (1960), 86-89. MR 0121665 (22:12399)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47.70, 45.13

Retrieve articles in all journals with MSC: 47.70, 45.13


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1967-0206754-7
Article copyright: © Copyright 1967 American Mathematical Society

American Mathematical Society