Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The structure of $ {\rm QF}-3$ rings


Author: Kent R. Fuller
Journal: Trans. Amer. Math. Soc. 134 (1968), 343-354
MSC: Primary 16.50
DOI: https://doi.org/10.1090/S0002-9947-1968-0227225-9
MathSciNet review: 0227225
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488. MR 0157984 (28:1212)
  • [2] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1962. MR 0144979 (26:2519)
  • [3] B. Eckmann and A. Schopf, Über injective Moduln, Arch. Math. 4 (1953), 75-78. MR 0055978 (15:5d)
  • [4] S. Eilenberg, Homological dimension and syzygies, Ann. of Math. 64 (1956), 328-336. MR 0082489 (18:558c)
  • [5] M. Harada, QF-3 and semi-primary PP-rings. II, Osaka J. Math. 3 (1966), 21-27. MR 0206049 (34:5874)
  • [6] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ., Vol. 37, rev. ed., Amer. Math. Soc., Providence, R. I., 1964. MR 0222106 (36:5158)
  • [7] J. P. Jans, Projective injective modules, Pacific J. Math. 9 (1959), 1103-1108. MR 0112904 (22:3750)
  • [8] K. Morita, Duality of modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Diagaku Sect. A 6 (1958), 85-142. MR 0096700 (20:3183)
  • [9] T. Nakayama, On Frobeniusean algebras. I, Ann. of Math. 40 (1939), 611-633. MR 0000016 (1:3a)
  • [10] -, On Frobeniusean algebras. II, Ann. of Math. 42 (1941), 1-22. U.M. Osima, Notes on basic rings. I, Math. J. Okayama Univ. 2 (1953), 103-110. MR 0004237 (2:344b)
  • [12] R. M. Thrall, Some generalizations of quasi-Frobenius algebras, Trans. Amer. Math. Soc. 64 (1948), 173-183. MR 0026048 (10:98c)
  • [13] D. W. Wall, Algebras with unique minimal faithful representations, Duke Math. J. 25 (1958), 321-329. MR 0096707 (20:3190)
  • [14] L. E. T. Wu, H. Y. Mochizuki, and J. P. Jans, A characterization of QF-3 rings, Nagoya Math. J. 27 (1966), 7-13. MR 0194470 (33:2680)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 16.50

Retrieve articles in all journals with MSC: 16.50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1968-0227225-9
Article copyright: © Copyright 1968 American Mathematical Society

American Mathematical Society