Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A commutative local ring with finite global dimension and zero divisors


Author: B. L. Osofsky
Journal: Trans. Amer. Math. Soc. 141 (1969), 377-385
MSC: Primary 13.95
DOI: https://doi.org/10.1090/S0002-9947-1969-0242814-4
MathSciNet review: 0242814
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] M. Auslander, On the dimension of modules and algebras. III, Nagoya Math. J. 9 (1955), 67-77. MR 0074406 (17:579a)
  • [2] I. Kaplansky, Projective modules, Ann. of Math. 68 (1958), 372-377. MR 0100017 (20:6453)
  • [3] -, Homological dimension of rings and modules, Mimeographed notes, University of Chicago, Chicago, Ill., 1959.
  • [4] B. Osofsky, Global dimension of valuation rings, Trans. Amer. Math. Soc. 126 (1967), 136-149. MR 0206074 (34:5899)
  • [5] -, Homological dimension and the continuum hypothesis, Trans. Amer. Math. Soc. 132 (1968), 217-230. MR 0224606 (37:205)
  • [6] -, Global dimension of commutative rings with linearly ordered ideals, J. London Math. Soc. 44 (1969), 183-185. MR 0231822 (38:150)
  • [7] L. Small, Some consequences of finite projective dimension, Report to the meeting on Rings and Modules at the Mathematisches Forschungsinstitut, Oberwolfach, Germany, 1968.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 13.95

Retrieve articles in all journals with MSC: 13.95


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1969-0242814-4
Article copyright: © Copyright 1969 American Mathematical Society

American Mathematical Society