Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Eigenfunction expansions associated with the Laplacian for certain domains with infinite boundaries. III


Author: Charles Goldstein
Journal: Trans. Amer. Math. Soc. 143 (1969), 283-301
MSC: Primary 35P10
DOI: https://doi.org/10.1090/S0002-9947-1969-0609010-X
MathSciNet review: 0609010
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] L. Bers, F. John and M. Schechter, Partial differential equations, Interscience, New York, 1964. MR 0163043 (29:346)
  • [2] M. Sh. Birman, Perturbations of continuous spectra of singular elliptic operators under the change of boundary and boundary conditions, Vestnik Leningrad Univ. 17 (1962), 22-55. MR 0138874 (25:2314)
  • [3] V. A. Ditkin and A. P. Prudnikov, Integral transforms and operational calculus, Pergamon Press, Oxford, 1965. MR 0196422 (33:4609)
  • [4] D. M. Eidus, The principle of limiting absorption, Amer. Math. Soc. Transl. 47 (1965), 156-192.
  • [5] C. Goldstein, Eigenfunction expansions associated with the Laplacian for certain domains with infinite boundaries. I, Trans. Amer. Maths. Soc. 135 (1969), 1-31. MR 0234140 (38:2459)
  • [6] -, Eigenfunction expansions associated with the Laplacian for certain domains with infinite boundaries. II, Trans. Amer. Math. Soc. 135 (1969), 33-50. MR 0234141 (38:2460)
  • [7] I. Ikebe, Eigenfunction expansions associated with the Schroedinger operator and their applications to scattering theory, Arch. Rational Mech. Anal. 5 (1960), 1-34. MR 0128355 (23:B1398)
  • [8] D. S. Jones, The eigenvalues of $ \Delta \mu + \lambda \mu = 0$ when the boundary conditions are given on semi-infinite domains, Proc. Cambridge Philos. Soc. 49 (1953), 668-684. MR 0058086 (15:319c)
  • [9] T. Kato, Wave operators and unitary equivalence, Pacific J. Math. 15 (1965), 171-174. MR 0180138 (31:4373)
  • [10] P. D. Lax and R. S. Phillips, Scattering theory, Academic Press, New York, 1967. MR 0217440 (36:530)
  • [11] N. Shenk, Eigenfunction expansions and scattering theory for the wave equation in an exterior region, Arch. Rational Mech. Anal. 21 (1966), 120-150. MR 0187631 (32:5081)
  • [12] -, The invariance of the wave operators associated with perturbations of $ - \Delta $, J. Math. Mech. 17 (1968), 1005-1022. MR 0227617 (37:3201)
  • [13] T. Shizuta, Eigenfunction expansions associated with the operator $ - \Delta $ in the exterior domain, Proc. Japan Acad. 39 (1963), 656-660. MR 0195420 (33:3620)
  • [14] M. Stone, Linear transformations in Hilbert space, Colloq. Publ., Vol. 15, Amer. Math. Soc., Providence, R. I., 1932. MR 1451877 (99k:47001)
  • [15] E. Titchmarsh, Introduction to the theory of Fourier integrals, Oxford Univ. Press, London, 1937.
  • [16] G. Watson, Bessel functions, Cambridge Univ. Press, Cambridge, 1922.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35P10

Retrieve articles in all journals with MSC: 35P10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1969-0609010-X
Article copyright: © Copyright 1969 American Mathematical Society

American Mathematical Society