Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A topologically strongly mixing symbolic minimal set


Author: K. E. Petersen
Journal: Trans. Amer. Math. Soc. 148 (1970), 603-612
MSC: Primary 54.82
DOI: https://doi.org/10.1090/S0002-9947-1970-0259884-8
MathSciNet review: 0259884
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Recent papers by the author, Keynes and Robertson, and others have shown that weakly mixing minimal flows are objects of considerable interest, but examples of such flows, other than the horocycle flows, have been scarce. We give here a ``machinal'' construction of a bilateral sequence with entries from 0, 1 whose orbit closure is topologically strongly mixing and minimal. We prove in addition that the flow we obtain has entropy zero, is uniquely ergodic, and fails to be measure-theoretically strongly mixing.


References [Enhancements On Off] (What's this?)

  • [1] R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. MR 30 #5291. MR 0175106 (30:5291)
  • [2] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1-49. MR 35 #4369. MR 0213508 (35:4369)
  • [3] W. H. Gottschalk and G. A. Hedlund, Topological dynamics, Amer. Math. Soc. Colloq. Publ., vol. 36, Amer. Math. Soc., Providence, R. I., 1955. MR 17, 650. MR 0074810 (17:650e)
  • [4] F. Hahn and Y. Katznelson, On the entropy of uniquely ergodic transformations, Trans. Amer. Math. Soc 126 (1967), 335-360. MR 34 #7772. MR 0207959 (34:7772)
  • [5] G. A. Hedlund, ``Transformations commuting with the shift,'' in Topological dynamics, J. Auslander and W. H. Gottschalk (Editors), Benjamin, New York, 1968, pp. 259-289. MR 38 #2762.
  • [6] K. Jacobs, Systemes dynamiques Riemanniens, (to appear). MR 0268876 (42:3773)
  • [7] S. Katutani, Ergodic theory of shift transformations, Proc. Fifth Berkeley Sympos. Math. Statist. Prob. (Berkeley, Calif., 1965/66), vol. II: Contributions to Probability Theory, part 2, Univ. of California Press, Berkeley, 1967, pp. 405-414. MR 37 #2943. MR 0227358 (37:2943)
  • [8] H. B. Keynes and J. B. Robertson, Eigenvalue theorems in topological transformation groups, Trans. Amer. Math. Soc. 139 (1969), 359-370. MR 0237748 (38:6029)
  • [9] M. Morse, Recurrent geodesies on a surface of negative curvature, Trans. Amer. Math. Soc. 22 (1921), 84-100. MR 1501161
  • [10] J. C. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc. 58 (1952), 116-136. MR 13, 850. MR 0047262 (13:850e)
  • [11] K. E. Petersen, A topologically strongly mixing symbolic minimal set, Notices Amer. Math. Soc. 16 (1969), 180. Abstract #663-328. MR 0259884 (41:4513)
  • [12] -, Disjointness and weak mixing of minimal sets, Proc. Amer. Math. Soc. 24 (1970), 278-280. MR 0250283 (40:3522)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54.82

Retrieve articles in all journals with MSC: 54.82


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1970-0259884-8
Keywords: Minimal sets, strong mixing, weak mixing, symbolic dynamics
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society