Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Zero-one laws for Gaussian processes


Author: G. Kallianpur
Journal: Trans. Amer. Math. Soc. 149 (1970), 199-211
MSC: Primary 60.50
DOI: https://doi.org/10.1090/S0002-9947-1970-0266293-4
MathSciNet review: 0266293
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Some zero-one laws are proved for Gaussian processes defined on linear spaces of functions. They are generalizations of a result for Wiener measure due to R. H. Cameron and R. E. Graves. The proofs exploit an interesting relationship between a Gaussian process and its reproducing kernel Hilbert space. Applications are discussed.


References [Enhancements On Off] (What's this?)

  • [1] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404. MR 14, 479. MR 0051437 (14:479c)
  • [2] R. H. Cameron and R. E. Graves, Additive functionals on a space of continuous functions. I, Trans. Amer. Math. Soc. 70 (1951), 160-176. MR 12, 718. MR 0040590 (12:718e)
  • [3] J. L. Doob, Stochastic processes, Wiley, New York and Chapman & Hall, London, 1953. MR 15, 445. MR 0058896 (15:445b)
  • [4] L. Fuchs, Abelian groups, Publishing House Hungarian Academy of Sciences, Budapest, 1958. MR 21 #5672. MR 0106942 (21:5672)
  • [5] I. M. Gel'fand and N. Ja. Vilenkin, Generalized functions. Vol. 4: Some applications of harmonic analysis, Fizmatgiz, Moscow, 1961; English transl., Academic Press, New York, 1964. MR 26 #4173; MR 30 #4152. MR 0435834 (55:8786d)
  • [6] P. R. Halmos, Measure theory, Van Nostrand, Princeton, N. J., 1950. MR 11, 504. MR 0033869 (11:504d)
  • [7] T. Hida and N. Ikeda, Analysis on Hilbert space with reproducing kernel arising from multiple Wiener integral, Proc. Fifth Berkeley Sympos. Math. Statist. and Prob. (Berkeley, Calif., 1965/66) vol. II, Univ. of California Press, Berkeley, Calif., 1967. MR 36 #2214. MR 0219131 (36:2214)
  • [8] K. Ito, Spectral type of the shift transformation of differential processes with stationary increments, Trans. Amer. Math. Soc. 81 (1956), 253-263. MR 17, 980. MR 0077017 (17:980b)
  • [9] E. L. Lehmann, Testing statistical hypotheses, Wiley, New York and Chapman & Hall, London, 1959. MR 21 #6654. MR 0107933 (21:6654)
  • [10] R. LePage, Estimation of parameters in signals of known forms and an isometry related to unbiased estimation, Thesis, Univ. of Minnesota, Minneapolis, 1967.
  • [11] E. Parzen, Statistical inference on time series by Hilbert space methods. I, Department of Statistics, Stanford Univ., Tech. Rep. No. 23, 1959.
  • [12] L. A. Shepp, Radon-Nikodým derivatives of Gaussian measures, Ann. Math. Statist. 37 (1966), 321-354. MR 32 #8408. MR 0190999 (32:8408)
  • [13] D. E. Varberg, Equivalent Gaussian measures with a particularly simple Radon-Nikodým derivative, Ann. Math. Statist. 38 (1967), 1027-1030. MR 35 #4981. MR 0214130 (35:4981)
  • [14] J. B. Walsh, A note on uniform convergence of stochastic processes, Proc. Amer. Math. Soc. 18 (1967), 129-132. MR 34 #3640. MR 0203792 (34:3640)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60.50

Retrieve articles in all journals with MSC: 60.50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1970-0266293-4
Keywords: Gaussian processes, zero-one laws, reproducing kernel Hilbert space
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society