spaces

Author:
Donald O. Koehler

Journal:
Trans. Amer. Math. Soc. **150** (1970), 507-518

MSC:
Primary 46.15; Secondary 47.00

DOI:
https://doi.org/10.1090/S0002-9947-1970-0262806-7

MathSciNet review:
0262806

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A complex normed linear space will be called a *space* if and only if there is a mapping from into the complex numbers such that: is linear for ; and . The basic models are the spaces, but one also has that every inner product space is a space for every integer . Hence spaces of a given cardinality need not be isometrically isomorphic. It is shown that a complex normed linear space is a space if and only if the norm satisfies a generalized parallelogram law. From the proof of this characterization it follows that a linear map from to is an isometry if and only if for all . This then provides a way to construct all of the isometries of a finite dimensional space. Of particular interest are the spaces in which . These spaces have many properties similar to inner product spaces. An operator on a complete space is said to be symmetric if and only if for all and . It is easy to show that these operators are scalar and that on , they characterize multiplication by a real function. The interest in nontrivial symmetric operators is that they exist if and only if the space can be decomposed into the direct sum of nontrivial spaces.

**[1]**H. G. Eggleston,*Convexity*, Cambridge Tracts in Math. and Math. Phys., no. 47, Cambridge Univ. Press, New York, 1958. MR**23**#A2123. MR**0124813 (23:A2123)****[2]**U. Fixmann,*Problems in spectral operators*, Pacific J. Math.**9**(1959), 1029-1051. MR**21**#7441. MR**0108727 (21:7441)****[3]**S. R. Foguel,*The relations between a spectral operator and its scalar part*, Pacific J. Math.**8**(1958), 51-65. MR**20**#3457. MR**0096976 (20:3457)****[4]**J. R. Giles,*Classes of semi-inner-product spaces*, Trans. Amer. Math. Soc.**129**(1967), 436-446. MR**36**#663. MR**0217574 (36:663)****[5]**P. Jordan and J. von Neumann,*On inner products in linear metric spaces*, Ann. of Math. (2)**36**(1935), 719-723. MR**1503247****[6]**D. O. Koehler,*A note on some operator theory in certain semi-inner-product spaces*, (to appear). MR**0281024 (43:6743)****[7]**D. O. Koehler and Peter Rosenthal,*On isometries of normed linear spaces*, Studia Math.**36**(1970), 215-218. MR**0275209 (43:966)****[8]**L. H. Loomis,*An introduction to abstract harmonic analysis*, Van Nostrand, Princeton, N. J., 1953. MR**14**, 883. MR**0054173 (14:883c)****[9]**G. Lumer,*Semi-inner-product spaces*, Trans. Amer. Math. Soc.**100**(1961), 29-43. MR**24**#A2860. MR**0133024 (24:A2860)****[10]**H. Minkowski, ``Theorie der Konvexen Körper, insbesondere Begründung ihres Oberflächenbegriffs,'' in*Ges Abhandl*. Vol. 2, Leipzig-Berlin, 1911, pp. 131-229.**[11]**T. V. Panchapagesan,*Unitary operators in Banach spaces*, Pacific J. Math.**22**(1967), 465-475. MR**35**#4762. MR**0213908 (35:4762)****[12]**B. J. Pettis,*A proof that every uniformly convex space is reflexive*, Duke Math. J.**5**(1939), 249-253. MR**1546121****[13]**J. G. Stampfli,*Adjoint abelian operators on Banach space*, Canad. J. Math.**2**(1969), 505-512. MR**0239450 (39:807)****[14]**A. Wilansky,*Functional analysis*, Blaisdell, Waltham, Mass., 1964. MR**30**#425. MR**0170186 (30:425)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
46.15,
47.00

Retrieve articles in all journals with MSC: 46.15, 47.00

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1970-0262806-7

Keywords:
Generalized-inner-products,
semi-inner-products,
inner products,
norms from multilinear forms,
generalized polarization identity,
generalized parallelogram law,
spaces,
spaces,
isometries on spaces,
symmetric operators on spaces

Article copyright:
© Copyright 1970
American Mathematical Society