Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Existence and stability of a class of nonlinear Volterra integral equations


Author: Stanley I. Grossman
Journal: Trans. Amer. Math. Soc. 150 (1970), 541-556
MSC: Primary 45.30
DOI: https://doi.org/10.1090/S0002-9947-1970-0265886-8
MathSciNet review: 0265886
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the problem of existence and uniqueness to solutions of the nonlinear Volterra integral equation $ x = f + {a_1}{g_1}(x) + \cdots + {a_n}{g_n}(x)$, where the $ {a_i}$ are continuous linear operators mapping a Fréchet space $ \mathcal{F}$ into itself and the $ {g_i}$ are nonlinear operators in that space. Solutions are sought which lie in a Banach subspace of $ \mathcal{F}$ having a stronger topology. The equations are studied first when the $ {g_i}$ are of the form $ {g_i}(x) = x + {h_i}(x)$ where $ {h_i}(x)$ is ``small", and then when the $ {g_i}$ are slope restricted. This generalizes certain results in recent papers by Miller, Nohel, Wong, Sandberg, and Beneš.


References [Enhancements On Off] (What's this?)

  • [1] V. E. Beneš and I. W. Sandberg, On the response of time-variable nonlinear systems to almost periodic signals, J. Math. Anal. Appl. 10 (1965), 245-268. MR 30 #5856. MR 0175672 (30:5856)
  • [2] C. Corduneanu, Some perturbation problems in the theory of integral equations, Math. Systems Theory 1 (1967), 143-155. MR 35 #4773. MR 0213919 (35:4773)
  • [3] R. K. Miller, On Volterra integral equations with nonnegative integrable resolvents, J. Math. Anal. Appl. 22 (1968), 319-340. MR 37 #3291. MR 0227707 (37:3291)
  • [4] -, On the linearization of Volterra integral equations, J. Math. Anal. Appl. 23 (1968), 198-208. MR 37 #5635. MR 0230070 (37:5635)
  • [5] R. K. Miller, J. A. Nohel and J. S. W. Wong, Perturbations of Volterra integral equations, J. Math. Anal. Appl. 25 (1969), 676-691. MR 0240573 (39:1920)
  • [6] John A. Nohel, Remarks on nonlinear Volterra equations, Proc. United States-Japan Seminar Differential and Functional Equations (Minneapolis, Minn., 1967), Benjamin, New York, 1967, pp. 249-266. MR 36 #5636. MR 0222586 (36:5636)
  • [7] R. E. A. C. Paley and N. Wiener, Fourier transforms in the complex domain, Amer. Math. Soc. Colloq. Publ., vol. 19, Amer. Math. Soc., Providence, R. I., 1934; reprint, 1967. MR 1451142 (98a:01023)
  • [8] I. W. Sandberg, On the boundedness of solutions of nonlinear integral equations, Bell System Tech. J. 44 (1965), 439-453. MR 33 #7806. MR 0199663 (33:7806)
  • [9] D. V. Widder, The Laplace transform, Princeton Math. Series, vol. 6, Princeton Univ. Press, Princeton, N. J., 1941. MR 3, 232. MR 0005923 (3:232d)
  • [10] G. Zames, On the input-output stability of time-varying nonlinear feedback systems, IEEE Trans. Automatic Control AC-11 (1966), 228-238, 465-476.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 45.30

Retrieve articles in all journals with MSC: 45.30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1970-0265886-8
Keywords: Volterra integral equation, nonlinear integral equation, applications of contraction map, integral equation resolvent, convolution equations, Fréchet space, completely monic function, Laplace-Stieltjes transform, multiple resolvent, slope restrictions, nonlinear network
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society