Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

The Hasse invariant of a vector bundle


Author: Richard R. Patterson
Journal: Trans. Amer. Math. Soc. 150 (1970), 425-443
MSC: Primary 55.50; Secondary 16.00
MathSciNet review: 0268893
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The object of this work is to define, by analogy with algebra, the Witt group and the graded Brauer group of a topological space $ X$. A homomorphism is defined between them analogous to the generalized Hasse invariant. Upon evaluation, the Witt group is seen to be $ \tilde KO(X)$, the graded Brauer group $ 1 + {H^1}(X;{Z_2}) + {H^2}(X;{Z_2})$ with truncated cup product multiplication, while the homomorphism is given by Stiefel-Whitney classes: $ 1 + {w_1} + {w_2}$.


References [Enhancements On Off] (What's this?)

  • [1] M. Arkowitz and C. R. Curjel, On the number of multiplications of an 𝐻-space, Topology 2 (1963), 205–209. MR 0153016
  • [2] M. F. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3 (1964), no. suppl. 1, 3–38. MR 0167985
  • [3] H. Bass, Topics in algebraic $ K$-theory, Mimeographed Notes, Tata Institute, Bombay, India, 1967.
  • [4] Antoine Delzant, Définition des classes de Stiefel-Whitney d’un module quadratique sur un corps de caractéristique différente de 2, C. R. Acad. Sci. Paris 255 (1962), 1366–1368 (French). MR 0142606
  • [5] Albrecht Dold, Halbexakte Homotopiefunktoren, Lecture Notes in Mathematics, vol. 12, Springer-Verlag, Berlin-New York, 1966 (German). MR 0198464
  • [6] P. Donovan and M. Karoubi, Graded Brauer groups and $ K$-theory with local coefficients, (to appear).
  • [7] -, Groupe de Brauer et coefficients locaux en $ K$-théorie, C. R. Acad. Sci. Paris 269 (1969), 387-389.
  • [8] A. Grothendieck, Algèbres d'Azumaya et interprétations diverse, Séminaire Bourbaki, 17e année (1964/65), exposé 290, reprint, Benjamin, New York, 1964/65. MR 33 #5420L.
  • [9] Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
  • [10] Wu-chung Hsiang, A note on free differentiable actions of 𝑆¹ and 𝑆³ on homotopy spheres, Ann. of Math. (2) 83 (1966), 266–272. MR 0192506
  • [11] John Milnor, Construction of universal bundles. II, Ann. of Math. (2) 63 (1956), 430–436. MR 0077932
  • [12] J. Milnor, Microbundles. I, Topology 3 (1964), no. suppl. 1, 53–80. MR 0161346
  • [13] Winfried Scharlau, Quadratische Formen und Galois-Cohomologie, Invent. Math. 4 (1967), 238–264 (German). MR 0225851
  • [14] Michael Spivak, Spaces satisfying Poincaré duality, Topology 6 (1967), 77–101. MR 0214071
  • [15] Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258
  • [16] C. T. C. Wall, Graded Brauer groups, J. Reine Angew. Math. 213 (1963/1964), 187–199. MR 0167498

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55.50, 16.00

Retrieve articles in all journals with MSC: 55.50, 16.00


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1970-0268893-4
Keywords: Vector bundles, Witt group, graded Brauer group, Hasse invariant, Clifford bundles
Article copyright: © Copyright 1970 American Mathematical Society