Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Measures with bounded convolution powers


Author: Bertram M. Schreiber
Journal: Trans. Amer. Math. Soc. 151 (1970), 405-431
MSC: Primary 42.50; Secondary 42.55
DOI: https://doi.org/10.1090/S0002-9947-1970-0264335-3
MathSciNet review: 0264335
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For an element x in a Banach algebra we study the condition

$\displaystyle \mathop {\sup }\limits_{n \geqq 1} \left\Vert {{x^n}} \right\Vert < \infty .$ ($ 1$)

Although our main results are obtained for the algebras $ M(G)$ of finite complex measures on a locally compact abelian group, we begin by considering the question of bounded powers from the point of view of general Banach-algebra theory. We collect some results relating to (1) for an element whose spectrum lies in the unit disc D and has only isolated points on $ \partial D$. There follows a localization theorem for commutative, regular, semisimple algebras A which says that whether or not (1) is satisfied for an element $ x \in A$ with spectral radius 1 is determined by the behavior of its Gelfand transform $ \hat x$ on any neighborhood of the points where $ \vert\hat x\vert = 1$. We conclude the general theory with remarks on the growth rates of powers of elements not satisfying (1).

After some applications of earlier results to the algebras $ M(G)$, we prove our main theorem. Namely, we obtain strong necessary conditions on the Fourier transform for a measure to satisfy (1). Some consequences of this theorem and related results follow. Via the generalization of a result of G. Strang, sufficient conditions for (1) to hold are obtained for functions in $ {L^1}(G)$ satisfying certain differentiability conditions. We conclude with the result that, for a certain class $ \mathcal{G}$ of locally compact groups containing all abelian and all compact groups, a group $ G \in \mathcal{G}$ has the property that every function in $ {L^1}(G)$ with spectral radius one satisfies (1) if and only if G is compact and abelian.


References [Enhancements On Off] (What's this?)

  • [1] A. Beurling, Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionelle, Nionde Skandanaviska Matematikerkongressen, Helsingfors, 1938, pp. 345-366.
  • [2] A. Beurling and H. Helson, Fourier-Stieltjes transforms with bounded powers, Math. Scand. 1 (1953), 120-126. MR 15, 307. MR 0058009 (15:307c)
  • [3] F. F. Bonsall and B. J. Tomiuk, The semi-algebra generated by a compact linear operator, Proc. Edinburgh Math. Soc. (2) 14 (1964/65), 177-196. MR 32 #1557. MR 0184083 (32:1557)
  • [4] P. Brenner, Power bounded matrices of Fourier-Stieltjes transforms, Math. Scand. 22 (1968), 115-129. MR 39 #6022. MR 0244708 (39:6022)
  • [5] F. Bruhat, Distributions sur un groupe localement compact et applications à l'étude des représentations des groupes p-adiques, Bull. Soc. Math. France 89 (1961), 43-75. MR 25 #4354. MR 0140941 (25:4354)
  • [6] P. J. Cohen, On a conjecture of Littlewood and idempotent measures, Amer. J. Math. 82 (1960), 191-212. MR 24 #A3231. MR 0133397 (24:A3231)
  • [7] -, On homomorphisms of group algebras, Amer. J. Math. 82 (1960), 213-226. MR 24 #A3232. MR 0133398 (24:A3232)
  • [8] J. Dixmier, Les moyennes invariantes dans les semi-groupes et leurs applications, Acta Sci. Math. Szeged 12 (1950), pars A, 213-227. MR 12, 267. MR 0037470 (12:267a)
  • [9] N. Dunford and J. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [10] J. E. Gilbert, On projections of $ {L^\infty }(G)$ onto translation-invariant subspaces, Proc. London Math. Soc. (3) 19 (1969), 69-88. MR 39 #6019. MR 0244705 (39:6019)
  • [11] S. Grosser and M. Moskowitz, On central topological groups, Trans. Amer. Math. Soc. 127 (1967), 317-340. MR 35 #292. MR 0209394 (35:292)
  • [12] -, Compactness conditions in topological groups. I, II, J. Reine Angew. Math. (to appear). MR 0284541 (44:1766)
  • [13] G. W. Hedstrom, Norms of powers of absolutely convergent Fourier series, Michigan Math. J. 13 (1966), 393-416. MR 34 #3193. MR 0203340 (34:3193)
  • [14] -, Norms of powers of absolutely convergent Fourier series in several variables, Michigan Math. J. 14 (1967), 493-495. MR 36 #5599. MR 0222549 (36:5599)
  • [15] E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der math. Wissenschaften, Band 115, Academic Press, New York and Springer-Verlag, Berlin and New York, 1963. MR 28 #158. MR 551496 (81k:43001)
  • [16] E. Hewitt and H. Rubin, The maximum value of a Fourier-Stieltjes transform, Math. Scand. 3 (1955), 97-102. MR 17, 172. MR 0071708 (17:172c)
  • [17] E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R. I., 1957. MR 19, 664. MR 0089373 (19:664d)
  • [18] T. Itô and I. Amemiya, A simple proof of the theorem of P. J. Cohen, Bull. Amer. Math. Soc. 70 (1964), 774-776. MR 29 #4862. MR 0167590 (29:4862)
  • [19] M. A. Kaashoek and T. T. West, Locally compact monothetic semi-algebras, Proc. London Math. Soc. (3) 18 (1968), 428-438. MR 37#3358. MR 0227774 (37:3358)
  • [20] T. Kato, Estimation of iterated matrices, with application to the von Neumann condition, Numer. Math. 2 (1960), 22-29. MR 22 #711. MR 0109826 (22:711)
  • [21] L. H. Loomis, An introduction to abstract harmonic analysis, The University Series in Higher Math., Van Nostrand, Princeton, N. J., 1953. MR 14, 883. MR 0054173 (14:883c)
  • [22] J. J. H. Miller, On power-bounded operators and operators satisfying a resolvent condition, Numer. Math. 10 (1967), 389-396. MR 36 #3147. MR 0220080 (36:3147)
  • [23] R. D. Richtmyer and K. W. Morton, Difference methods for initial-value problems, 2nd ed., Interscience Tracts in Pure and Appl. Math., no. 4, Interscience, New York, 1967. MR 36 #3515. MR 0220455 (36:3515)
  • [24] C. E. Rickart, General theory of Banach algebras, The University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #5903. MR 0115101 (22:5903)
  • [25] L. C. Robertson, Note on the structure of Moore groups, Bull. Amer. Math. Soc. 75 (1969), 594-598. MR 0245721 (39:7027)
  • [26] W. Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Appl. Math., no. 12, Interscience, New York, 1962. MR 27 #2808. MR 0152834 (27:2808)
  • [27] B. M. Schreiber, Bounded iterates in Banach algebras, Thesis submitted to University of Washington, May 1968.
  • [28] -, On the coset ring and strong Ditkin sets, Pacific J. Math. 32 (1970), 805-812. MR 0259502 (41:4140)
  • [29] S. I. Serdjukova, A necessary and sufficient condition for stability in the uniform metric of systems of difference equations, Dokl. Akad. Nauk SSSR 173 (1967), 526-528 = Soviet Math. Dokl. 8 (1967), 438-440. MR 36 #4845. MR 0221793 (36:4845)
  • [30] -, On stability in the uniform metric of systems of difference equations, Ž. Vyčisl. Mat. i Mat. Fiz. 7 (1967), 497-509. (Russian) MR 35 #7023. MR 0216188 (35:7023)
  • [31] W. G. Strang, Polynomial approximation of Bernstein type, Trans. Amer. Math. Soc. 105 (1962), 525-535. MR 25 #5318. MR 0141921 (25:5318)
  • [32] B. Sz.-Nagy, On uniformly bounded linear transformations in Hilbert space, Acta Univ. Szeged Sect. Sci. Math. 11 (1947), 152-157. MR 9, 191. MR 0022309 (9:191b)
  • [33] V. Thomée, Stability of difference schemes in the maximum-norm, J. Differential Equations 1 (1965), 273-292. MR 31 #515. MR 0176240 (31:515)
  • [34] V. Ja. Urm, Necessary and sufficient conditions for the stability of a system of difference equations, Dokl. Akad. Nauk SSSR 139 (1961), 40-43 = Soviet Math. Dokl. 2 (1961), 873-876. MR 24 #A337. MR 0130476 (24:A337)
  • [35] A. Wawrzyńczyk, On tempered distributions and Bochner-Schwartz theorem on arbitrary locally compact Abelian groups, Colloq. Math. 19 (1968), 305-318. MR 37 #3355. MR 0227771 (37:3355)
  • [36] A. Weil, L'intégration dans les groupes topologiques et ses applications, 2nd ed., Actualités Sci. Indust., nos. 869, 1145, Hermann, Paris, 1951.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42.50, 42.55

Retrieve articles in all journals with MSC: 42.50, 42.55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1970-0264335-3
Keywords: Bounded iterates, convolution powers, singly-generated algebras, spectral projection, semisimple algebra, regular algebra, partition of unity, localization, extreme point, growth rate, Bohr compactification, idempotent measure, coset ring, homomorphism of group algebras, piecewise affine map, compactly generated group, extension of Fourier-Stieltjes transforms, differentiable Fourier transforms, commutator subgroup
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society