Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Homological dimension and cardinality


Author: B. L. Osofsky
Journal: Trans. Amer. Math. Soc. 151 (1970), 641-649
MSC: Primary 16.90; Secondary 04.00
DOI: https://doi.org/10.1090/S0002-9947-1970-0265411-1
MathSciNet review: 0265411
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \{ e(i)\vert i \in \mathcal{I}\} $ be an infinite set of commuting idempotents in a ring R with 1 such that

$\displaystyle \prod\limits_{\alpha = 0}^n {e({i_\alpha })\prod\limits_{\beta = n + 1}^m {(1 - e({i_\beta })) \ne 0} } $

for $ \{ {i_\alpha }\vert \leqq \alpha \leqq n\} \cap \{ {i_\beta }\vert n + 1 \leqq \beta \leqq m\} = \emptyset $. Let I be the right ideal generated by these idempotents. We show that the projective dimension of I is $ n < \infty $ if and only if the cardinality of $ I = {\aleph _n}$. As a consequence, a countable direct product of fields has global dimension $ k + 1$ if and only if $ {2^{{\aleph _0}}} = {\aleph _k}$. The same is true for a full linear ring on a countable dimensional vector space over a field of cardinality at most $ {2^{{\aleph _0}}}$. On the other hand, if $ {2^{{\aleph _0}}} > {\aleph _\omega }$, then any right and left self-injective ring which is not semi-perfect, any ring containing an infinite direct product of subrings, any ring containing the endomorphism ring of a countable direct sum of modules, and many quotient rings of such rings must all have infinite global dimension.

References [Enhancements On Off] (What's this?)

  • [1] M. Auslander, On the dimension of modules and algebras. III: Global dimension, Nagoya Math. J. 9 (1955), 67-77. MR 17, 579. MR 0074406 (17:579a)
  • [2] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ., vol. 37, Amer. Math. Soc., Providence, R. I., 1964. MR 36 #5158. MR 0222106 (36:5158)
  • [3] I. Kaplansky, Projective modules, Ann. of Math. (2) 68 (1958), 372-377. MR 20 #6453. MR 0100017 (20:6453)
  • [4] B. Osofsky, Global dimension of valuation rings, Trans. Amer. Math. Soc. 127 (1967), 136-149. MR 34 #5899. MR 0206074 (34:5899)
  • [5] -, Homological dimension and the continuum hypothesis, Trans. Amer. Math. Soc. 132 (1968), 217-230. MR 37 #205. MR 0224606 (37:205)
  • [6] -, Noninjective cyclic modules, Proc. Amer. Math. Soc. 19 (1968), 1383-1384. MR 38 #185. MR 0231857 (38:185)
  • [7] R. Pierce, The global dimension of Boolean rings, J. Algebra 7 (1967), 91-99. MR 37 #5269. MR 0229695 (37:5269)
  • [8] R. Sikorski, Boolean algebras, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band 25, Academic Press, New York and Springer-Verlag, Berlin and New York, 1964. MR 31 #2178. MR 0177920 (31:2178)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 16.90, 04.00

Retrieve articles in all journals with MSC: 16.90, 04.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1970-0265411-1
Keywords: Homological dimension, global dimension of rings, cardinal number corresponding to $ {2^{{\aleph _0}}}$, direct products of rings, endomorphism rings
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society