Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The spectrum of partial differential operators on $ L\sp{p}\,(R\sp{n})$


Authors: Franklin T. Iha and C. F. Schubert
Journal: Trans. Amer. Math. Soc. 152 (1970), 215-226
MSC: Primary 47.65; Secondary 35.00
DOI: https://doi.org/10.1090/S0002-9947-1970-0270211-2
MathSciNet review: 0270211
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to prove that if the polynomial $ P(\xi )$ associated with a partial differential operator $ P$ on $ {L^p}({R^n})$, with constant coefficients, has the growth property, $ \vert P(\xi ){\vert^{ - 1}} = O(\vert\xi {\vert^{ - r}}),\vert\xi \vert \to \infty $ for some $ r > 0$, then the spectrum of $ P$ is either the whole complex plane or it is the numerical range of $ P(\xi )$; and if $ P(\xi )$ has some additional property (all the coefficients of $ P(\xi )$ being real, for example), then the spectrum of $ P$ is the numerical range for those $ p$ sufficiently close to 2. It is further shown that the growth property alone is not sufficient to ensure that the spectrum of $ P$ is the numerical range of $ P(\xi )$.


References [Enhancements On Off] (What's this?)

  • [1] E. Balslev, The essential spectrum of elliptic differential operators in $ {L^p}({R^n})$, Trans. Amer. Math. Soc. 116 (1965), 193-217. MR 32 #7936. MR 0190524 (32:7936)
  • [2] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [3] L. Hörmander, Estimates for translation invariant operators in $ {L^p}$ spaces, Acta Math. 104 (1960), 93-140. MR 22 #12389. MR 0121655 (22:12389)
  • [4] -, Linear partial differential operators, Die Grundlehren der math. Wissenschaften, Band 116, Academic Press, New York and Springer-Verlag, Berlin, 1963. MR 28 #4221.
  • [5] W. Littman, C. McCarthy and N. Rivière, The non-existence of $ {L^p}$-estimates for certain translation-invariant operators, Studia Math. 30 (1968), 219-229. MR 37 #6682. MR 0231127 (37:6682)
  • [6] M. Schechter, Partial differential operators on $ {L^p}({E^n})$, Bull. Amer. Math. Soc. 75 (1969), 548-549. MR 0254669 (40:7876)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47.65, 35.00

Retrieve articles in all journals with MSC: 47.65, 35.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1970-0270211-2
Keywords: Spectrum of differential operators, partial differential operators
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society