On the cohomology of stable two stage Postnikov systems

Author:
John R. Harper

Journal:
Trans. Amer. Math. Soc. **152** (1970), 375-388

MSC:
Primary 55.50

DOI:
https://doi.org/10.1090/S0002-9947-1970-0268892-2

MathSciNet review:
0268892

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the cohomology of certain fibre spaces. The spaces are the total spaces of stable two stage Postnikov systems. We study their cohomology as Hopf algebras over the Steenrod algebra. The first theorem determines the cohomology as a Hopf algebra over the ground field, the algebra structure being known previously. The second theorem relates the action of the Steenrod algebra to the Hopf algebra structure and other available structures. The work is in the direction of explicit computations of these structures but is not quite complete with regard to the action of the Steenrod algebra. The ideas of Massey and Peterson [7], Mem. Amer. Math. Soc. No. 74, are used extensively, and cohomology is used throughout.

**[1]**J. F. Adams,*On the non-existence of elements of Hopf invariant one*, Ann. of Math. (2)**72**(1960), 20–104. MR**0141119**, https://doi.org/10.2307/1970147**[2]**J. F. Adams,*On the structure and applications of the Steenrod algebra*, Comment. Math. Helv.**32**(1958), 180–214. MR**0096219**, https://doi.org/10.1007/BF02564578**[3]**Leif Kristensen,*On the cohomology of spaces with two non-vanishing homotopy groups*, Math. Scand.**12**(1963), 83–105. MR**0159334**, https://doi.org/10.7146/math.scand.a-10674**[4]**Leif Kristensen,*On secondary cohomology operations. II*, Conf. on Algebraic Topology (Univ. of Illinois at Chicago Circle, Chicago, Ill., 1968) Univ. of Illinois at Chicago Circle, Chicago, Ill., 1969, pp. 117–133. MR**0250300****[5]**Arunas Liulevicius,*The factorization of cyclic reduced powers by secondary cohomology operations*, Proc. Nat. Acad. Sci. U.S.A.**46**(1960), 978–981. MR**0132543****[6]**W. S. Massey and F. P. Peterson,*The cohomology structure of certain fibre spaces. I*, Topology**4**(1965), 47–65. MR**0189032**, https://doi.org/10.1016/0040-9383(65)90048-0**[7]**-,*The cohomology structure of certain fibre spaces*, Mem. Amer. Math. Soc. No. 74 (1967). MR**37**#2226.**[8]**R. James Milgram,*The structure over the Steenrod algebra of some 2-stage Postnikov systems*, Quart. J. Math. Oxford Ser. (2)**20**(1969), 161–169. MR**0248811**, https://doi.org/10.1093/qmath/20.1.161**[9]**R. James Milgram,*Steenrod squares and higher Massey products*, Bol. Soc. Mat. Mexicana (2)**13**(1968), 32–57. MR**0263074****[10]**Franklin P. Peterson,*A note on 𝐻-spaces*, Bol. Soc. Mat. Mexicana (2)**4**(1959), 30–31. MR**0120644****[11]**Larry Smith,*The cohomology of stable two stage Postnikov systems*, Illinois J. Math.**11**(1967), 310–329. MR**0208597****[12]**N. E. Steenrod,*Cohomology operations*, Lectures by N. E. STeenrod written and revised by D. B. A. Epstein. Annals of Mathematics Studies, No. 50, Princeton University Press, Princeton, N.J., 1962. MR**0145525**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
55.50

Retrieve articles in all journals with MSC: 55.50

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1970-0268892-2

Keywords:
Fibration,
fibre space,
Postnikov system,
Hopf algebra,
Steenrod algebra,
stable -invariant,
Massey-Peterson fundamental sequence

Article copyright:
© Copyright 1970
American Mathematical Society