Functional analytic properties of topological semigroups and -extreme amenability

Author:
Anthony To-ming Lau

Journal:
Trans. Amer. Math. Soc. **152** (1970), 431-439

MSC:
Primary 22.05; Secondary 46.00

DOI:
https://doi.org/10.1090/S0002-9947-1970-0269772-9

MathSciNet review:
0269772

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a topological semigroup, be the space of left uniformly continuous functions on , and be the set of multiplicative means on . If has a left invariant mean in the convex hull of , we associate with a *unique* finite group such that for any maximal proper closed left translation invariant ideal in , there exists a linear isometry mapping one-one onto the set of bounded real functions on . We also generalise some recent results of T. Mitchell and E. Granirer. In particular, we show that satisfies iff whenever is a jointly continuous action on a compact hausdorff space , there exists a nonempty finite subset of such that for all . Furthermore, a discrete semigroup satisfies iff whenever is an antirepresentation of as linear maps from a norm linear space into with for all , there exists a finite subset such that the distance (induced by the norm) of from linear span of in coincides with distance of from 0 for all .

**[1]**F. F. Bonsall, J. Lindenstrauss and R. R. Phelps,*Extreme positive operators on algebras of functions*, Math. Scand.**18**(1966), 161-182. MR**35**#759. MR**0209863 (35:759)****[2]**M. M. Day,*Amenable semigroups*, Illinois J. Math.**1**(1957), 509-544. MR**19**, 1067. MR**0092128 (19:1067c)****[3]**-, ``Semigroups and amenability, a survey,''*Semigroups*, Academic Press, New York, 1969, pp. 5-53. MR**0265502 (42:411)****[4]**N. Dunford and J. Schwartz,*Linear operators*. I:*General theory*, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR**22**#8302. MR**0117523 (22:8302)****[5]**E. Granirer,*A theorem on amenable semigroups*, Trans. Amer. Math. Soc.**3**(1964), 367-397. MR**29**# 3870. MR**0166597 (29:3870)****[6]**-,*Extremely amenable semigroups*, Math. Scand.**17**(1965), 177-197. MR**33**#5760. MR**0197595 (33:5760)****[7]**-,*Extremely amenable semigroups*. II, Math. Scand.**20**(1967), 93-113. MR**35**#3422. MR**0212551 (35:3422)****[8]**-,*Functional analytic properties of extremely amenable semigroups*, Trans. Amer. Math. Soc.**137**(1969), 53-75. MR**39**#765. MR**0239408 (39:765)****[9]**E. Granirer and A. Lau,*Invariant mean on locally compact groups*, Illinois J. Math. (to appear). MR**0277667 (43:3400)****[10]**F. P. Greenleaf,*Invariant means on topological groups and their applications*, Van Nostrand, Princeton, N. J., 1969. MR**0251549 (40:4776)****[11]**E. Hewitt and K. Ross,*Abstract harmonic analysis*. I:*Structure of topological groups. Integration theory, group representations*, Die Grundlehren der math. Wissenschaften, Band 115, Academic Press, New York and Springer-Verlag, Berlin, 1963. MR**28**#158. MR**551496 (81k:43001)****[12]**A. Lau,*Topological semigroups with invariant means in the convex hull of multiplicative means*, Trans. Amer. Math. Soc.**148**(1970), 69-84. MR**0257260 (41:1911)****[13]**E. S. Ljapin,*Semigroups*, Fizmatgiz, Moscow, 1960; English transl., Transl. Math. Monographs, vol. 3, Amer. Math. Soc., Providence, R. I., 1963; rev. ed., 1968. MR**22**#11054; MR**29**#4817. MR**0167545 (29:4817)****[14]**T. Mitchell,*Fixed points and multiplicative left invariant means*, Trans. Amer. Math. Soc.**122**(1966), 195-202. MR**32**#7662. MR**0190249 (32:7662)****[15]**-,*Function algebras, means, and fixed points*, Trans. Amer. Math. Soc.**130**(1968), 117-126. MR**36**#666. MR**0217577 (36:666)****[16]**-,*Topological semigroups and fixed points*, Illinois J. Math. (to appear). MR**0270356 (42:5245)****[17]**I. Namioka,*On certain actions of semi-groups on -spaces*, Studia Math.**29**(1967), 63-77. MR**36**#6910. MR**0223863 (36:6910)****[18]**J. Sorenson,*Existence of measures that are invariant under a semi-group of transformations*, Thesis, Purdue University, Lafayette, Ind., 1966.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
22.05,
46.00

Retrieve articles in all journals with MSC: 22.05, 46.00

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1970-0269772-9

Keywords:
Topological semigroups,
-extremely amenable,
amenable semigroup,
-extremely amenable semigroup,
uniformly continuous functions,
jointly continuous actions,
multiplicative means,
invariant means,
maximal translation invariant closed ideal,
finite intersection property,
right ideal,
group homomorphisms,
locally compact groups,
fixed points,
point measure

Article copyright:
© Copyright 1970
American Mathematical Society