Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The dual topology for the principal and discrete series on semisimple groups


Author: Ronald L. Lipsman
Journal: Trans. Amer. Math. Soc. 152 (1970), 399-417
MSC: Primary 22.60
DOI: https://doi.org/10.1090/S0002-9947-1970-0269778-X
MathSciNet review: 0269778
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a locally compact group $ G$, the dual space $ \hat G$ is the set of unitary equivalence classes of irreducible unitary representations equipped with the hull-kernel topology. We prove three results about $ \hat G$ in the case that $ G$ is a semisimple Lie group: (1) the irreducible principal series forms a Hausdorff subspace of $ \hat G$; (2) the ``discrete series'' of square-integrable representations does in fact inherit the discrete topology from $ \hat G$; (3) the topology of the reduced dual $ {\hat G_r}$, that is the support of the Plancherel measure, is computed explicitly for split-rank 1 groups.


References [Enhancements On Off] (What's this?)

  • [1] F. Bruhat, Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France 84 (1956), 97-205. MR 18, 907. MR 0084713 (18:907i)
  • [2] J. Dixmier, Les $ {C^ \ast }$-algèbres et leurs représentations, Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1964. MR 30 #1404. MR 0171173 (30:1404)
  • [3] J. M. G. Fell, The dual spaces of $ {C^ \ast }$-algebras, Trans. Amer. Math. Soc. 94 (1960), 365-403. MR 26 #4201. MR 0146681 (26:4201)
  • [4] a) Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185-243. MR 15, 100. b) Representations of semisimple Lie groups. II, Trans. Amer. Math. Soc. 76 (1954), 26-65. MR 15, 398. c) Representations of semisimple Lie groups. III, Trans. Amer. Math. Soc. 76 (1954), 234-253. MR 16, 11. d) The Plancherel formula for complex semisimple Lie groups, Trans. Amer. Math. Soc. 76 (1954), 485-528. MR 16, 111. e) A formula for semisimple Lie groups, Amer. J. Math. 79 (1957), 733-760. MR 20 #2633. f) Some results on an invariant integral on a semisimple Lie algebra, Ann. of Math. (2) 80 (1964), 551-593. MR 31 #4862b. g) Invariant eigendistributions on a semisimple Lie group, Trans. Amer. Math. Soc. 119 (1965), 457-508. MR 31 #4862d. h) Discrete series for semisimple Lie groups. I: Construction of invariant eigendistributions, Acta Math. 113 (1965), 241-318. MR 36#2744. i) Two theorems on semi-simple Lie groups, Ann. of Math. (2) 83 (1966), 74-128. MR 33 #2766. j) Discrete series for semisimple Lie groups. II: Explicit determination of the characters, Acta Math. 116 (1966), 1-111. MR 36 #2745. MR 0219665 (36:2744)
  • [5] B. Kostant, On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc. 75 (1969), 627-642. MR 0245725 (39:7031)
  • [6] I. Satake, On representations and compactifications of symmetric Riemannian spaces, Ann. of Math. (2) 71 (1960), 77-110. MR 22 #9546. MR 0118775 (22:9546)
  • [7] R. Takahashi, Sur les représentations unitaires des groupes de Lorentz généralisés, Bull. Soc. Math. France 91 (1963), 289-433. MR 31 #3544. MR 0179296 (31:3544)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22.60

Retrieve articles in all journals with MSC: 22.60


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1970-0269778-X
Keywords: Semisimple Lie groups, irreducible unitary representations, dual space, hull-kernel topology, principal series, discrete series, Plancherel measure, universal enveloping algebra, characters, invariant eigendistributions, Cartan subgroups, root systems, Weyl group
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society