Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Entropy for group endomorphisms and homogeneous spaces


Author: Rufus Bowen
Journal: Trans. Amer. Math. Soc. 153 (1971), 401-414
MSC: Primary 28.70; Secondary 22.00
DOI: https://doi.org/10.1090/S0002-9947-1971-0274707-X
Erratum: Trans. Amer. Math. Soc. 181 (1973), 509-510.
MathSciNet review: 0274707
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Topological entropy $ {h_d}(T)$ is defined for a uniformly continuous map on a metric space. General statements are proved about this entropy, and it is calculated for affine maps of Lie groups and certain homogeneous spaces. We compare $ {h_d}(T)$ with measure theoretic entropy $ h(T)$; in particular $ h(T) = {h_d}(T)$ for Haar measure and affine maps $ T$ on compact metrizable groups. A particular case of this yields the well-known formula for $ h(T)$ when $ T$ is a toral automorphism.


References [Enhancements On Off] (What's this?)

  • [1] R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. MR 30 #5291. MR 0175106 (30:5291)
  • [2] R. Bowen, Periodic points and measures for Axiom diffeomorphisms, Trans. Amer. Math. Soc. (to appear). MR 0282372 (43:8084)
  • [3] L. W. Goodwyn, Topological entropy bounds measure theoretic entropy, Proc. Amer. Math. Soc. 23 (1969), 679-688. MR 0247030 (40:299)
  • [4] -, The product theorem for topological entropy (to appear).
  • [5] J. Munkres, Elementary differential topology, Ann. of Math. Studies, no. 54, Princeton Univ. Press, Princeton, N. J., 1963, pp. 23-24. MR 29 #623. MR 0163320 (29:623)
  • [6] W. Parry, Entropy and generators in ergodic theory, Math. Lecture Note Series, Benjamin, New York, 1969. MR 0262464 (41:7071)
  • [7] Ja. G. Sinaĭ, On the concept of entropy of dynamic system, Dokl. Akad. Nauk SSSR 124 (1959), 768-771. (Russian) MR 21 #2036a. MR 0103256 (21:2036a)
  • [8] V. A. Rohlin, Exact endomorphisms of a Lebesgue space, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 499-530; English transl., Amer. Math. Soc. Transl. (2) 39 (1964), 1-36. MR 26 #1423. MR 0143873 (26:1423)
  • [9] A. L. Genis, Metric properties of endomorphisms of an $ r$-dimensional torus, Dokl. Akad. Nauk SSSR 138 (1961), 991-993 = Soviet Math. Dokl. 2 (1961), 750-752. MR 34 #2766. MR 0202907 (34:2766)
  • [10] D. Z. Arov, Calculation of entropy for a class of group endomorphisms, Zap. Meh.-Mat. Fak. Har'kov. Gos. Univ. i Har'kov. Mat. Obšč. (4) 30 (1964), 48-69. (Russian) MR 35 #4368. MR 0213507 (35:4368)
  • [11] K. Kryzewski and W. Schlenk, On invariant measures for expanding differentiable mappings, Studia Math. 33 (1969), 83-92. MR 0245761 (39:7067)
  • [12] K. Berg, Thesis, Minnesota.
  • [13] -, Convolution of invariant measures, maximum entropy (to appear).
  • [14] D. Montgomery and L. Zippin, Topological transformation groups, Interscience, New York, 1955. MR 17, 383. MR 0073104 (17:383b)
  • [15] H. B. Keynes, Lifting topological entropy, Proc. Amer. Math. Soc. 24 (1970), 440-445. MR 0274710 (43:472)
  • [16] C. Chevalley, Theory of Lie groups. I, Princeton Math. Series, vol. 8, Princeton Univ. Press, Princeton, N. J., 1946. MR 7, 412. MR 0082628 (18:583c)
  • [17] D. Anosov and Ja. G. Sinaĭ, Certain smooth ergodic systems, Uspehi Mat. Nauk 22 (1967), no. 5 (137), 107-172 = Russian Math. Surveys 22 (1967), no. 5, 103-167. MR 37 #370. MR 0224771 (37:370)
  • [18] L. Loomis, An introduction to abstract harmonic analysis, Van Nostrand, Princeton, N. J., 1953, p. 75. MR 14, 883. MR 0054173 (14:883c)
  • [19] W. Parry, Ergodic properties of affine transformations and flows on nilmanifolds, Amer. J. Math. 91 (1969), 757-771. MR 0260975 (41:5595)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28.70, 22.00

Retrieve articles in all journals with MSC: 28.70, 22.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0274707-X
Keywords: Entropy, $ T$-homogeneous measure
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society