Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Differential-boundary operators


Author: Allan M. Krall
Journal: Trans. Amer. Math. Soc. 154 (1971), 429-458
MSC: Primary 34.30
DOI: https://doi.org/10.1090/S0002-9947-1971-0271445-4
Addendum: Trans. Amer. Math. Soc. 180 (1973), 505.
MathSciNet review: 0271445
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Differential-boundary systems occur naturally as adjoints for ordinary differential systems involving integral boundary conditions. In this paper such systems are generalized so that the adjoint system has the same form as the original. Interior boundary points are introduced and removed, and the integrals, used in the boundary conditions, are also removed. Selfadjoint systems are classified, and an eigenfunction expansion is derived. Finally, nonselfadjoint systems are discussed and again, an eigenfunction expansion is derived.


References [Enhancements On Off] (What's this?)

  • [1] Friedrich Betschier, Über Integraldarstellungen welche aus speziellen Randwertproblemen bei gewohnlichen linearen inhomogenen Differentialgleichungen entspringen, Doctoral Dissertation, Julius-Maximilians-Universität, Wurzburg, Germany, 1912.
  • [2] G. A. Bliss, A boundary value problem for a system of ordinary linear differential equations of the first order, Trans. Amer. Math. Soc. 28 (1926), 561-584. MR 1501366
  • [3] -, Definitely self-adjoint boundary value problems, Trans. Amer. Math. Soc. 44 (1938), 413-428. MR 1501974
  • [4] R. N. Bryan, A linear differential system with general linear boundary conditions, J. Differential Equations 5 (1969), 38-48. MR 38 #1312. MR 0232989 (38:1312)
  • [5] -, A nonhomogeneous linear differential system with interface conditions, Proc. Amer. Math. Soc. 22 (1969), 270-276. MR 39 #3078. MR 0241739 (39:3078)
  • [6] E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955. MR 16, 1022. MR 0069338 (16:1022b)
  • [7] R. H. Cole, General boundary conditions for an ordinary linear differential system, Trans. Amer. Math. Soc. 111 (1964), 521-550. MR 28 #3193. MR 0159979 (28:3193)
  • [8] Roberto Conti, Recent trends in the theory of boundary value problems for ordinary differential equations, Bol. Un. Mat. Ital. (3) 22 (1967), 135-178. MR 36 #1734. MR 0218650 (36:1734)
  • [9] W. Feller, The parabolic differential equations and the associated semi-groups of transformations, Ann. of Math. (2) 55 (1952), 468-519. MR 13, 948. MR 0047886 (13:948a)
  • [10] A. Halanay and A. Maro, A boundary value problem and its adjoint, Ann. Mat. Pura Appl. (4) 79 (1968), 399-411. MR 38 #2371. MR 0234052 (38:2371)
  • [11] E. Hilb, Über Reihentwicklungen, welche aus speciallen Randwertproblemen bei gewohnlichen linearen inhomogenen Differentialgleichungen entspringen, J. Reine Angew. Math. 140 (1911), 205-229.
  • [12] W. R. Jones, Differential systems with integral boundary conditions, J. Differential Equations 3 (1967), 191-202. MR 34 #6207. MR 0206388 (34:6207)
  • [13] Taeboo Kim, Investigation of a differential-boundary operator of the second order with an integral boundary condition on a semi-axis, Doctoral Dissertation, Pennsylvania State University, University Park, Pennsylvania, 1969.
  • [14] A. M. Krall, A nonhomogeneous eigenfunction expansion, Trans. Amer. Math. Soc. 117 (1965), 352-361. MR 31 #6020. MR 0181793 (31:6020)
  • [15] -, The adjoint of a differential operator with integral boundary conditions, Proc. Amer. Math. Soc. 16 (1965), 738-742. MR 31 #6021. MR 0181794 (31:6021)
  • [16] -, Second order ordinary differential operators with general boundary conditions, Duke Math. J. 32 (1965), 617-626. MR 32 #1397. MR 0183921 (32:1397)
  • [17] -, Nonhomogeneous differential operators, Michigan Math. J. 12 (1965), 247-255. MR 31 #418. MR 0176143 (31:418)
  • [18] -, Differential operators and their adjoints under integral and multiple point boundary conditions, J. Differential Equations 4 (1968), 327-336. MR 37 #6525. MR 0230968 (37:6525)
  • [19] R. Mansfield, Differential systems involving k-point boundary conditions, Contributions to Calculus Variations 1938-1941, Univ. of Chicago Press, Chicago, Ill., 1942, pp. 413-452. MR 4, 200. MR 0007835 (4:200b)
  • [20] M. A. Naĭmark, Linear differential operators, GITTL, Moscow, 1954; English transl, part I, Ungar, New York, 1967. MR 16, 702; MR 35 #6885.
  • [21] R. S. Phillips, Dissipative operators and hyperbolic systems of partial differential equations, Trans. Amer. Math. Soc. 90 (1959), 193-254. MR 21 #3669. MR 0104919 (21:3669)
  • [22] W. T. Reid, A class of two-point boundary value problems, Illinois J. Math. 2 (1958), 434-453. MR 20 #3331. MR 0096849 (20:3331)
  • [23] F. Reisz and B. Sz.-Nagy, Functional analysis, 2nd ed., Akad. Kiadó, Budapest, 1953; English transl., Ungar, New York, 1955. MR 15, 132; MR 17, 175.
  • [24] F. W. Stallard, Functions of bounded variation as solutions of differential systems, Proc. Amer. Math. Soc. 13 (1962), 366-373. MR 25 #2276. MR 0138835 (25:2276)
  • [25] W. M. Whyburn, Differential systems with general boundary conditions, Seminar Reports in Math., Univ. of Calif. Publ. 2 (1944), 45-61. MR 0010226 (5:265a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34.30

Retrieve articles in all journals with MSC: 34.30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0271445-4
Keywords: Operator, differential operator, boundary value problem, differential system, selfadjoint, nonselfadjoint, Sturm-Liouville problem, adjoint, eigenvalue, spectrum, spectral resolution
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society