Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Stiefel-Whitney numbers of quaternionic and related manifolds


Author: E. E. Floyd
Journal: Trans. Amer. Math. Soc. 155 (1971), 77-94
MSC: Primary 57.10
DOI: https://doi.org/10.1090/S0002-9947-1971-0273632-8
MathSciNet review: 0273632
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: There is considered the image of the symplectic cobordism ring $ \Omega _\ast^{SP}$ in the unoriented cobordism ring $ {N_\ast }$. A polynomial subalgebra of $ {N_\ast }$ is exhibited, with all generators in dimensions divisible by 16, such that the image is contained in the polynomial subalgebra. The methods combine the $ K$-theory characteristic numbers as used by Stong with the use of the Landweber-Novikov ring.


References [Enhancements On Off] (What's this?)

  • [1] P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Math. und ihrer Grenzgebiete, Band 33, Academic Press, New York; Springer-Verlag, Berlin, 1964. MR 31 #750. MR 0176478 (31:750)
  • [2] -, The relation of cobordism to $ K$-theories, Lecture Notes in Math., no. 28, Springer-Verlag, Berlin and New York, 1966. MR 35 #7344.
  • [3] -, Torsion in SU-bordism, Mem. Amer. Math. Soc. No. 60 (1966). MR 32 #6471. MR 0189044 (32:6471)
  • [4] W. C. Hsiang and R. H. Szczarba, On the tangent bundle of a Grassmann manifold, Amer. J. Math. 86 (1964), 698-704. MR 30 #2523. MR 0172304 (30:2523)
  • [5] P. S. Landweber, Cobordism operations and Hopf algebras, Trans. Amer. Math. Soc. 129 (1967), 94-110. MR 36 #2145. MR 0219062 (36:2145)
  • [6] J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211-264. MR 30 #4259. MR 0174052 (30:4259)
  • [7] S. P. Novikov, The method of algebraic topology from the viewpoint of cobordism theories, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 855-951. = Math. USSR Izv. 1 (1967), 827-913. MR 36 #4561. MR 0221509 (36:4561)
  • [8] David M. Segal, Symplectic cobordism of manifolds, Thesis, Massachusetts Institute of Technology, Cambridge, Mass., 1968; Comment. Math. Helv. 45 (1970), 159-169. MR 0263094 (41:7699)
  • [9] R. E. Strong, Relations among characteristic numbers. I, II, Topology 4 (1965), 267-281; Topology 5 (1966), 133-148. MR 33 #740; MR 33 #741. MR 0192515 (33:740)
  • [10] -, Notes on cobordism theory, Princeton Univ. Press, Princeton, N. J.; Univ. of Tokyo Press, Tokyo, 1968. MR 0248858 (40:2108)
  • [11] -, Some remarks on symplectic cobordism, Ann. of Math. (2) 86 (1967), 425-433. MR 36 #2162. MR 0219079 (36:2162)
  • [12] R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86. MR 15, 890. MR 0061823 (15:890a)
  • [13] C. T. C. Wall, Determination of the cobordism ring, Ann. of Math (2) 72 (1960), 292-311. MR 22 #11403. MR 0120654 (22:11403)
  • [14] Don D. Porter, Novikov resolutions for symplectic cobordism, Thesis, Northwestern University, Evanston, Ill., 1969.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57.10

Retrieve articles in all journals with MSC: 57.10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0273632-8
Keywords: Quaternionic manifolds, symplectic cobordism, unoriented cobordism, Stiefel-Whitney numbers, $ K$-theory characteristic numbers
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society