Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Some immersion theorems for manifolds


Author: A. Duane Randall
Journal: Trans. Amer. Math. Soc. 156 (1971), 45-58
MSC: Primary 57.20
DOI: https://doi.org/10.1090/S0002-9947-1971-0286121-1
MathSciNet review: 0286121
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we obtain several results on immersing manifolds into Euclidean spaces. For example, a spin manifold $ {M^n}$ immerses in $ {R^{2n - 3}}$ for dimension $ n \equiv 0\bmod 4$ and n not a power of 2. A spin manifold $ {M^n}$ immerses in $ {R^{2n - 4}}$ for $ n \equiv 7\bmod 8$ and $ n > 7$. Let $ {M^n}$ be a 2-connected manifold for $ n \equiv 6\bmod 8$ and $ n > 6$ such that $ {H_3}(M;Z)$ has no 2-torsion. Then M immerses in $ {R^{2n - 5}}$ and embeds in $ {R^{2n - 4}}$. The method of proof consists of expressing k-invariants in Postnikov resolutions for the stable normal bundle of a manifold by means of higher order cohomology operations. Properties of the normal bundle are used to evaluate the operations.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20-104. MR 25 #4530. MR 0141119 (25:4530)
  • [2] J. Adem, On secondary cohomology operations, Bol. Soc. Mat. Mexicana (2) 7 (1962), 95-110. (Spanish) MR 29 #5243. MR 0167978 (29:5243)
  • [3] J. Adem and S. Gitler, Secondary characteristic classes and the immersion problem, Bol. Soc. Mat. Mexicana (2) 8 (1963), 53-78. MR 29 #5255. MR 0167990 (29:5255)
  • [4] J. Adem, S. Gitler and M. Mahowald, Embedding and immersion of projective spaces, Bol. Soc. Mat. Mexicana (2) 10 (1965), 84-88. MR 36 #3369. MR 0220303 (36:3369)
  • [5] M. F. Atiyah, Thom complexes, Proc. London Math. Soc. (3) 11 (1961), 291-310. MR 24 #A1727. MR 0131880 (24:A1727)
  • [6] A. Dold, Erzeugende der Thomschen Algebra $ \mathfrak{N}$, Math. Z. 65 (1956), 25-35. MR 18, 60. MR 0079269 (18:60c)
  • [7] S. Feder, Non-immersion theorems for complex and quaternionic projective spaces, Bol. Soc. Mat. Mexicana (2) 11 (1966), 62-67. MR 38 #721. MR 0232396 (38:721)
  • [8] S. Gitler and M. Mahowald, The geometric dimension of real stable vector bundles, Bol. Soc. Mat. Mexicana (2) 11 (1966), 85-107. MR 37 #6922. MR 0231367 (37:6922)
  • [9] S. Gitler, M. Mahowald and R. J. Milgram, Secondary cohomology operations and divisibility of the Chern class, Proc. Amer. Math. Soc. (to appear). MR 0243515 (39:4836)
  • [10] H. Glover, Thesis, University of Michigan, Ann. Arbor, Mich., 1967.
  • [11] A. Haefliger and M. W. Hirsch, On the existence and classification of differentiable embeddings, Topology 2 (1963), 129-135. MR 26 #6981. MR 0149494 (26:6981)
  • [12] M. W. Hirsch, Immersion of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242-276. MR 22 #9980. MR 0119214 (22:9980)
  • [13] C. S. Hoo and M. E. Mahowald, Some homotopy groups of Stiefel manifolds, Bull. Amer. Math. Soc. 71 (1965), 661-667. MR 31 #1675. MR 0177412 (31:1675)
  • [14] M. E. Mahowald, On obstruction theory in orientable fiber bundles, Trans. Amer. Math. Soc. 110 (1964), 315-349. MR 28 #620. MR 0157386 (28:620)
  • [15] -, Some Whitehead products in $ {S^n}$, Topology 4 (1965), 17-26. MR 31 #2724. MR 0178467 (31:2724)
  • [16] M. E. Mahowald and F. P. Peterson, Secondary cohomology operations on the Thom class, Topology 2 (1963), 367-377. MR 28 #612. MR 0157378 (28:612)
  • [17] M. E. Mahowald and R. F. Williams, The stable homotopy of $ K(Z,n)$, Bol. Soc. Mat. Mexicana (2) 11 (1966), 22-28. MR 38 #3867. MR 0235563 (38:3867)
  • [18] W. S. Massey and F. P. Peterson, On the dual Stiefel-Whitney classes of a manifold, Bol. Soc. Mat. Mexicana (2) 8 (1963), 1-13. MR 29 #628. MR 0163325 (29:628)
  • [19] -, The cohomology structure of certain fibre spaces. I, Topology 4 (1965), 47-65. MR 32 #6459. MR 0189032 (32:6459)
  • [20] G. F. Paechter, The groups $ {\pi _r}({V_{n,m}})$. I, Quart. J. Math. Oxford Ser. (2) 7 (1956), 249-268. MR 24 #A1725. MR 0131878 (24:A1725)
  • [21] A. D. Randall, Some immersion theorems for projective spaces, Trans. Amer. Math. Soc. 147 (1970), 135-151. MR 0253357 (40:6572)
  • [22] B. J. Sanderson and R. L. E. Schwarzenberger, Non-immersion theorems for differentiable manifolds, Proc. Cambridge Philos. Soc. 59 (1963), 319-322. MR 26 #5589. MR 0148080 (26:5589)
  • [23] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 #1007. MR 0210112 (35:1007)
  • [24] E. Thomas, Seminar on fiber spaces, Lecture Notes in Math., no. 13, Springer-Verlag, Berlin and New York, 1966. MR 34 #3582. MR 0203733 (34:3582)
  • [25] -, Postnikov invariants and higher order cohomology operations, Ann. of Math. (2) 85 (1967), 184-217. MR 35 #1029. MR 0210135 (35:1029)
  • [26] -, Real and complex vector fields on manifolds, J. Math. Mech. 16 (1967), 1183-1205. MR 35 #1030. MR 0210136 (35:1030)
  • [27] -, The index of a tangent 2-field, Comment. Math. Helv. 42 (1967), 86-110. MR 35 #6158. MR 0215317 (35:6158)
  • [28] -, The span of a manifold, Quart. J. Math. Oxford Ser. (2) 19 (1968), 225-244. MR 38 #2804. MR 0234487 (38:2804)
  • [29] -, On the existence of immersions and submersions, Trans. Amer. Math. Soc. 132 (1968), 387-394. MR 37 #926. MR 0225332 (37:926)
  • [30] -, An exact sequence for principal fibrations, Bol. Soc. Mat. Mexicana (2) 12 (1967), 35-45. MR 39 #4847. MR 0243526 (39:4847)
  • [31] -, Vector fields on low dimensional manifolds, Math. Z. 103 (1968), 85-93. MR 36 #7156. MR 0224109 (36:7156)
  • [32] J. J. Ucci, Immersions and embeddings of Dold manifolds, Topology 4 (1965), 283-293. MR 32 #4703. MR 0187250 (32:4703)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57.20

Retrieve articles in all journals with MSC: 57.20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0286121-1
Keywords: Immersion, embedding, spin manifold, normal bundle, Postnikov resolution, k-invariant, twisted cohomology operation, higher order cohomology operation, Thom complex, Poincaré duality, Dold manifold
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society