The approximation of linear operators
Authors:
J. W. Brace and P. J. Richetta
Journal:
Trans. Amer. Math. Soc. 157 (1971), 121
MSC:
Primary 47.55
MathSciNet review:
0278122
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be the vector space of all linear maps of into . Consider a subspace of such as all continuous maps. In distinguish a subspace of maps which are to be approximated by members of a smaller subspace of . Thus we always have . Then the approximation problem which we consider is to find a locally convex linear Hausdorff topology on such that or the completion of is . In the case where and are Banach spaces, we have approximation topologies for (i) all linear operators, (ii) all the continuous linear operators, (iii) all weakly compact operators, (iv) all completely continuous operators, (v) all compact operators, and (vi) certain subclasses of the strictly singular operators. Our method is that of considering members of as linear forms on . Each class of linear operators is characterized as a family of linear forms. We exploit these characterizations to develop the needed topologies. Convergence on filters appears as a natural tool in doing this; indeed, in the case of linear forms we can obtain every relevant topology via convergence on filters. Particular examples give representations of weak topologies. A byproduct of the main results is that Grothendieck's approximation condition holds when we have the weak topology on a locally convex space.
 [1]
John
W. Brace, The topology of almost uniform convergence, Pacific
J. Math. 9 (1959), 643–652. MR 0109293
(22 #179)
 [2]
John
W. Brace, Approximating compact and weakly
compact operators, Proc. Amer. Math. Soc.
12 (1961),
392–393. MR 0130575
(24 #A435), http://dx.doi.org/10.1090/S00029939196101305757
 [3]
John
W. Brace, Convergence on filters and simple equicontinuity,
Illinois J. Math. 9 (1965), 286–296. MR 0176438
(31 #710)
 [4]
John
W. Brace and Robert
M. Nielsen, A uniform boundedness
theorem, Proc. Amer. Math. Soc. 18 (1967), 624–627. MR 0212532
(35 #3403), http://dx.doi.org/10.1090/S00029939196702125320
 [5]
J.
W. Brace, G.
D. Friend, and P.
J. Richetta, Locally convex topologies on function spaces,
Duke Math. J. 36 (1969), 709–714. MR 0253008
(40 #6223)
 [6]
Nelson
Dunford and Jacob
T. Schwartz, Linear Operators. I. General Theory, With the
assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics,
Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers,
Ltd., London, 1958. MR 0117523
(22 #8302)
 [7]
Alexandre
Grothendieck, Produits tensoriels topologiques et espaces
nucléaires, Mem. Amer. Math. Soc. 1955 (1955),
no. 16, 140 (French). MR 0075539
(17,763c)
 [8]
Richard
H. Herman, Operator representation
theorems, Proc. Amer. Math. Soc. 19 (1968), 372–376. MR 0222705
(36 #5755), http://dx.doi.org/10.1090/S0002993919680222705X
 [9]
J. Horváth, Topological vector spaces and distributions. Vol. 1, AddisonWesley, Reading, Mass., 1966. MR 34 #4863.
 [10]
John
L. Kelley, General topology, D. Van Nostrand Company, Inc.,
TorontoNew YorkLondon, 1955. MR 0070144
(16,1136c)
 [11]
Irving
Kaplansky, Functional analysis, Some aspects of analysis and
probability, Surveys in Applied Mathematics. Vol. 4, John Wiley &
Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958,
pp. 1–34. MR 0101475
(21 #286)
 [12]
Ivan
Singer, On the basis problem in topological linear spaces,
Rev. Roumaine Math. Pures Appl. 10 (1965), 453–457.
MR
0194875 (33 #3081)
 [13]
J.
W. Brace, The space of continuous linear
operators as a completion of 𝐸′⊗𝐹, Bull. Amer. Math. Soc. 75 (1969), 821–823. MR 0246087
(39 #7393), http://dx.doi.org/10.1090/S000299041969123104
 [1]
 J. W. Brace, The topology of almost uniform convergence, Pacific J. Math. 9 (1959), 643652. MR 22 #179. MR 0109293 (22:179)
 [2]
 , Approximating compact and weakly compact operators, Proc. Amer. Math. Soc. 12 (1961), 392393. MR 24 #A435. MR 0130575 (24:A435)
 [3]
 , Convergence on filters and simple equicontinuity, Illinois J. Math. 9 (1965), 286296. MR 31 #710. MR 0176438 (31:710)
 [4]
 J. W. Brace and R. M. Nielsen, A uniform boundedness theorem, Proc. Amer. Math. Soc. 18 (1967), 624627. MR 35 #3403. MR 0212532 (35:3403)
 [5]
 J. W. Brace, G. D. Friend and P. J. Richetta, Locally convex topologies on function spaces, Duke Math. J. 36 (1969), 709714. MR 40 #6223. MR 0253008 (40:6223)
 [6]
 N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
 [7]
 A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16 (1955). MR 17, 763. MR 0075539 (17:763c)
 [8]
 R. H. Herman, Operator representation theorems, Proc. Amer. Math. Soc. 10 (1968), 372376. MR 36 #5755. MR 0222705 (36:5755)
 [9]
 J. Horváth, Topological vector spaces and distributions. Vol. 1, AddisonWesley, Reading, Mass., 1966. MR 34 #4863.
 [10]
 J. L. Kelley, General topology, Van Nostrand, Princeton, N. J., 1955. MR 16, 1136. MR 0070144 (16:1136c)
 [11]
 I. Kaplansky, Functional analysis. Some aspects of analysis and probability, Surveys in Appl. Math., vol. 4, Wiley, New York; Chapman & Hall, London, 1958. MR 21 #286. MR 0101475 (21:286)
 [12]
 I. Singer, On the basis problem in topological linear spaces, Rev. Roumaine Math. Pures Appl. 10 (1965), 453457. MR 33 #3081. MR 0194875 (33:3081)
 [13]
 J. W. Brace, The space of continuous linear operators as a completion of , Bull. Amer. Math. Soc. 75 (1969), 821823. MR 39 #7393. MR 0246087 (39:7393)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
47.55
Retrieve articles in all journals
with MSC:
47.55
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197102781224
PII:
S 00029947(1971)02781224
Keywords:
Approximation of linear operators,
compact operators,
weakly compact operators,
completely continuous operators,
tensor products,
convergence on filters,
completions,
Grothendieck's completion theorem,
Grothendieck's approximation property,
weak topologies
Article copyright:
© Copyright 1971
American Mathematical Society
