Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the $ C\sp*$-algebra of Toeplitz operators on the quarterplane


Authors: R. G. Douglas and Roger Howe
Journal: Trans. Amer. Math. Soc. 158 (1971), 203-217
MSC: Primary 46.65
DOI: https://doi.org/10.1090/S0002-9947-1971-0288591-1
MathSciNet review: 0288591
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Using the device of the tensor product of $ {C^ \ast }$-algebras, we study the $ {C^ \ast }$-algebra generated by the Toeplitz operators on the quarter-plane. We obtain necessary and sufficient conditions for such an operator to be Fredholm, but show in this case that not all such operators are invertible.


References [Enhancements On Off] (What's this?)

  • [1] M. Breuer, Fredholm theories in von Neumann algebras. I, Math. Ann. 178 (1968), 243-254. MR 38 #2611. MR 0234294 (38:2611)
  • [2] -, Fredholm theories in von Neumann algebras. II, Math. Ann. 180 (1969), 313-325. MR 0264407 (41:9002)
  • [3] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 17, 1040. MR 0077480 (17:1040e)
  • [4] L. A. Coburn, The $ {C^ \ast }$-algebra generated by an isometry. I, Bull. Amer. Math. Soc. 73 (1967), 722-726. MR 35 #4760. MR 0213906 (35:4760)
  • [5] -, The $ {C^ \ast }$-algebra generated by an isometry. II, Trans. Amer. Math. Soc. 137 (1969), 211-217. MR 38 #5015. MR 0236720 (38:5015)
  • [6] L. A. Coburn and R. G. Douglas, Translation operators on the half-line, Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 1010-1013. MR 0275228 (43:985)
  • [7] -, On $ {C^ \ast }$-algebras of operators on a half-space. I, Inst. Hautes Études Sci. Publ. Math. (to appear). MR 0358417 (50:10883)
  • [8] L. A. Coburn, R. G. Douglas, D. G. Schaeffer and I. M. Singer, On $ {C^ \ast }$-algebras of operators on a half-space. II. Index theory, Inst. Hautes Études Sci. Publ. Math. (to appear). MR 0358418 (50:10884)
  • [9] J. Dixmier, Les $ {C^ \ast }$-algèbres et leurs représentations, Cahiers scientifiques, fasc. 29, Gauthier-Villars, Paris, 1964. MR 30 #1404. MR 0171173 (30:1404)
  • [10] R. G. Douglas, On the spectrum of a class of Toeplitz operators, J. Math. Meth. 18 (1968/69), 433-435. MR 39 #799. MR 0239442 (39:799)
  • [11] -, ``On the spectrum of Toeplitz and Wiener-Hopf operators,'' in Abstract spaces and approximation theory, edited by P. L. Butzer and B. Sz.-Nagy, Birkhauser Verlag, Basel and Stuttgart, 1969. MR 0259638 (41:4274)
  • [12] I. C. Gohberg and M. G. Krein, Systems of integral equations on a half line with kernels depending on the difference of arguments, Uspehi Mat. Nauk 13 (1958), no. 2 (80), 3-72; English transl., Amer. Math. Soc. Transl. (2) 14 (1960), 217-287. MR 21 #1506; MR 22 #3954. MR 0113114 (22:3954)
  • [13] L. S. Gol'denšteĭn, Tests for one-sided inverses of functions of several isometric operators and their applications, Dokl. Akad. Nauk SSSR 155 (1964), 28-31=Soviet Math. Dokl. 5 (1964), 330-334. MR 28 #4403. MR 0161195 (28:4403)
  • [14] L. S. Gol'denšteĭn and I. C. Gohberg, On a multidimensional integral equation on a half-space whose kernel is a function of the difference of the arguments, and on a discrete analogue of this equation, Dokl. Akad. Nauk SSSR 131 (1960), 9-12=Soviet Math. Dokl. 1 (1960), 173-176. MR 22 #8298. MR 0117519 (22:8298)
  • [15] U. Grenander and G. Szegö, Toeplitz forms and their applications, California Monographs in Math. Sciences, Univ. of California Press, Los Angeles, Calif., 1958. MR 20 #1349. MR 0094840 (20:1349)
  • [16] P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N. J., 1967. MR 34 #8178. MR 0208368 (34:8178)
  • [17] M. Kac, Theory and applications of Toeplitz forms, Summer Institute on Spectral Theory and Statistical Mechanics, Brookhaven National Laboratories, 1965.
  • [18] M. G. Kreĭn, Integral equations on a half-line with kernel depending upon the difference of the arguments, Uspehi Mat. Nauk 13 (1958), no. 5 (83), 3-120; English transl., Amer. Math. Soc. Transl. (2) 22 (1962), 163-288. MR 21 #1507. MR 0102721 (21:1507)
  • [19] V. A. Malyšev, On the solution of discrete Wiener-Hopf equations in a quarter-plane, Dokl. Akad. Nauk SSSR 187 (1969), 1243-1246=Soviet Math. Dokl. 10 (1969), 1032-1036. MR 0262858 (41:7463)
  • [20] S. J. Osher, Systems of difference equations with general homogeneous boundary conditions, Trans. Amer. Math. Soc. 137 (1969), 177-201. MR 38 #6259. MR 0237982 (38:6259)
  • [21] -, On certain Toeplitz operators in two variables, Pacific J. Math. 34 (1970), 123-129. MR 0267408 (42:2310)
  • [22] W. Rudin, Function theory in polydiscs, Benjamin, New York, 1969. MR 0255841 (41:501)
  • [23] I. B. Simonenko, Operators of convolution type in cones, Mat. Sb. 74 (116) (1967), 298-313=Math. USSR Sb. 3 (1967), 279-293. MR 36 #5773. MR 0222723 (36:5773)
  • [24] M. Takesaki, On the cross-norm of the direct product of $ {C^ \ast }$-algebras, Tôhoku Math. J. (2) 16 (1964), 111-122. MR 29 #2668. MR 0165384 (29:2668)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46.65

Retrieve articles in all journals with MSC: 46.65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0288591-1
Keywords: Toeplitz operator, Wiener-Hopf operator, generalized Fredholm theory, tensor products
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society