Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Whitehead products as images of Pontrjagin products


Author: Martin Arkowitz
Journal: Trans. Amer. Math. Soc. 158 (1971), 453-463
MSC: Primary 55.40
DOI: https://doi.org/10.1090/S0002-9947-1971-0278300-4
MathSciNet review: 0278300
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A method is given for computing higher order Whitehead products in the homotopy groups of a space $ X$. If $ X$ can be embedded in an $ H$-space $ E$ such that the pair $ (E,X)$ has sufficiently high connectivity, then we prove that a higher order Whitehead product element in the homotopy of $ X$ is the homomorphic image of a Pontrjagin product in the homology of $ E$. The two main applications determine a higher order Whitehead product element in (1) $ {\pi _ \ast }(B{U_t})$, the homotopy groups of the classifying space of the unitary group $ {U_t}$, (2) the homotopy groups of a space with two nonvanishing homotopy groups.


References [Enhancements On Off] (What's this?)

  • [1] M. Arkowitz, A homological method for computing certain Whitehead products, Bull. Amer. Math. Soc. 74 (1968), 1079-1082. MR 39 #2159. MR 0240814 (39:2159)
  • [2] R. Bott, A note on the Samelson product in the classical groups, Comment. Math. Helv. 34 (1960), 249-256. MR 23 #A658. MR 0123330 (23:A658)
  • [3] R. Bott and H. Samelson, On the Pontryagin product in spaces of paths, Comment. Math. Helv. 27 (1953), 320-337. MR 15, 643. MR 0060233 (15:643b)
  • [4] Séminaire Henri Cartan École Norm. Sup. 1954/55, Secrétariat mathématique, Paris, 1955. MR 19, 438.
  • [5] Séminaire Henri Cartan 1959/60, École Norm. Sup., Secrétariat mathématique, Paris, 1961. MR 28 #1092.
  • [6] A. H. Copeland, Jr., The Pontrjagin ring for certain loop spaces, Proc. Amer. Math. Soc. 7 (1956), 528-534. MR 17, 1232. MR 0078691 (17:1232b)
  • [7] S. T. Hu, Homotopy theory, Pure and Appl. Math., vol. 8, Academic Press, New York, 1959. MR 21 #5186. MR 0106454 (21:5186)
  • [8] J.-P. Meyer, Whitehead products and Postnikov systems, Amer. J. Math. 82 (1960), 271-280. MR 26 #6965. MR 0149477 (26:6965)
  • [9] G. J. Porter, Spaces with vanishing Whitehead products, Quart. J. Math. Oxford Ser. (2) 16 (1965), 77-84. MR 30 #2511. MR 0172292 (30:2511)
  • [10] -, Higher order Whitehead products and Postnikov systems, Illinois J. Math. 11 (1967), 414-416. MR 36 #7138. MR 0224091 (36:7138)
  • [11] N. Stein, Note on the realization of Whitehead products, Quart. J. Math. Oxford Ser. (2) 17 (1966), 160-164. MR 33 #4932. MR 0196746 (33:4932)
  • [12] G. W. Whitehead, A generalization of the Hopf invariant, Ann. of Math. (2) 51 (1950), 192-237. MR 12, 847. MR 0041435 (12:847b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55.40

Retrieve articles in all journals with MSC: 55.40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0278300-4
Keywords: Whitehead product, higher order Whitehead product, Pontrjagin product, Postnikov systems, Samelson product, classifying space of the unitary group, Eilenberg-MacLane complex
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society