Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Differentiable monotone maps on manifolds. II


Author: P. T. Church
Journal: Trans. Amer. Math. Soc. 158 (1971), 493-501
MSC: Primary 57.20
DOI: https://doi.org/10.1090/S0002-9947-1971-0278320-X
MathSciNet review: 0278320
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {M^n}$ and $ {N^n}$ be closed manifolds, and let $ G$ be any (nonzero) module. (1) If $ f:{M^3} \to {N^3}$ is $ {C^3}$ $ G$-acyclic, then there is a closed $ {C^3}$ $ 3$-manifold $ {K^3}$ such that $ {N^3}\char93 {K^3}$ is diffeomorphic to $ {M^3}$, and $ {f^{ - 1}}(y)$ is cellular for all but at most $ r$ points $ y \in {N^3}$, where $ r$ is the number of nontrivial $ G$-cohomology $ 3$-spheres in the prime decomposition of $ {K^3}$. (2) If $ f:{M^3} \to {M^3}$ or $ f:{S^3} \to {M^3}$ is $ G$-acyclic, then $ f$ is cellular. In case $ G$ is $ Z$ or $ {Z_p}$ ($ p$ prime), results analogous to (1) and (2) in the topological category have been proved by Alden Wright. (3) If $ f:{M^n} \to {M^n}$ or $ f:{S^n} \to {M^n}$ is real analytic monotone onto, then $ f$ is a homeomorphism.


References [Enhancements On Off] (What's this?)

  • [1] S. Armentrout, Cellular decompositions of $ 3$-manifolds that yield $ 3$-manifolds, Bull. Amer. Math. Soc. 75 (1969), 453-456. MR 39 #935. MR 0239578 (39:935)
  • [2] -, Upper semi-continuous decompositions of $ {E^3}$ with at most countably many nondegenerate elements, Ann. of Math. (2) 78 (1963), 605-618. MR 27 #6255. MR 0156331 (27:6255)
  • [3] A. Borel and A. Haefliger, La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. France 89 (1961), 461-513. MR 26 #6990. MR 0149503 (26:6990)
  • [4] M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76. MR 22 #8470b. MR 0117695 (22:8470b)
  • [5] P. T. Church, Differentiable maps with non-negative Jacobian, J. Math. Mech. 16 (1966), 703-708. MR 34 #5096. MR 0205263 (34:5096)
  • [6] -, Differentiable monotone maps on manifolds, Trans. Amer. Math. Soc. 128 (1967), 185-205. MR 39 #3505. MR 0242172 (39:3505)
  • [7] -, Differentiable open maps on manifolds, Trans. Amer. Math. Soc. 109 (1963), 87-100. MR 27 #4245. MR 0154296 (27:4245)
  • [8] -, Factorization of differentiable maps with branch set dimension at most $ n - 3$, Trans. Amer. Math. Soc. 115 (1965), 370-387. MR 33 #3306. MR 0195101 (33:3306)
  • [9] -, On points of Jacobian rank $ k$. II, Proc. Amer. Math. Soc. 16 (1965), 1035-1038. MR 31 #6241. MR 0182017 (31:6241)
  • [10] P. T. Church and W. D. Nathan, Real analytic maps on manifolds, J. Math. Mech. 19 (1969), 19-36. MR 39 #4860. MR 0243539 (39:4860)
  • [11] P. T. Church and J. G. Timourian, Fiber bundles with singularities, J. Math. Mech. 18 (1968/69), 71-90. MR 38 #3876. MR 0235572 (38:3876)
  • [12] H. Kneser, Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten, Jber. Deutsch. Math.-Verein. 30 (1929), 248-260.
  • [13] K. W. Kwun and F. Raymond, Almost acyclic maps of manifolds, Amer. J. Math. 86 (1964), 638-649. MR 32 #1712. MR 0184239 (32:1712)
  • [14] S. MacLane, Homology, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #122. MR 0156879 (28:122)
  • [15] D. R. McMillan, Jr., Acyclicity in three-manifolds, Bull. Amer. Math. Soc. 76(1970), 942-964. MR 0270380 (42:5269)
  • [16] -, Compact, acyclic subsets of three-manifolds, Michigan Math. J. 16 (1969), 129136. MR 39 #4822. MR 0243501 (39:4822)
  • [17] -, Decompositions of euclidean space yielding a manifold, Notices Amer. Math. Soc. 17 (1970), 679. Abstract #70T-G81.
  • [18] -, Strong homotopy equivalence of $ 3$-manifolds, Bull. Amer. Math. Soc. 73 (1967), 718-722. MR 37 #4817. MR 0229243 (37:4817)
  • [19] J. Milnor, A unique decomposition theorem for $ 3$-manifolds, Amer. J. Math. 84 (1962), 1-7. MR 25 #5518. MR 0142125 (25:5518)
  • [20] J. R. Munkres, Elementary differential topology, Ann. of Math. Studies, no. 54, Princeton Univ. Press, Princeton, N. J., 1963. MR 29 #623. MR 0163320 (29:623)
  • [21] -, Obstructions to the smoothing of piecewise-differentiable homeomorphisms, Ann. of Math. (2) 72 (1960), 521-554. MR 22 #12534. MR 0121804 (22:12534)
  • [22] R. S. Palais, Natural operations on differential forms, Trans. Amer. Math. Soc. 92 (1959), 125-141. MR 22 #7140. MR 0116352 (22:7140)
  • [23] T. Radó and P. V. Reichelderfer, Continuous transformations in analysis. With an introduction to algebraic topology, Die Grundlehren der math. Wissenschaften, Band 65, SpringerVerlag, Berlin, 1955. MR 18, 115. MR 0079620 (18:115c)
  • [24] J. H. Roberts and N. E. Steenrod, Monotone transformations of two-dimensional manifolds, Ann. of Math. (2) 39 (1938), 851-862. MR 1503441
  • [25] A. Sard, Hausdorff measure of critical images on Banach manifolds, Amer. J. Math. 87 (1965), 158-174. MR 30 #3958. MR 0173748 (30:3958)
  • [26] L. C. Siebenmann, Approximating cellular maps by homeomorphisms, Notices Amer. Math. Soc. 17 (1970), 532. Abstract #674-40.
  • [27] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 #1007. MR 0210112 (35:1007)
  • [28] S. Sternberg, Lectures on differential geometry, Prentice-Hall, Englewood Cliffs, N. J., 1964. MR 33 #1797. MR 0193578 (33:1797)
  • [29] R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86. MR 15, 890. MR 0061823 (15:890a)
  • [30] J. R. Walker, Monotone mappings and monotone decompositions, Ph.D. Dissertation, Syracuse University, Syracuse, New York, 1970.
  • [31] H. Whitney, Differentiable manifolds, Ann. of Math. (2) 37 (1936), 645-680. MR 1503303
  • [32] G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R. I;, 1942. MR 4, 86. MR 0007095 (4:86b)
  • [33] A. Wright, Mappings from $ 3$-manifolds onto $ 3$-manifolds (to appear).
  • [34] -, Monotone mappings of compact $ 3$-manifolds, Notices Amer. Math. Soc. 16 (1969), 853-854. Abstract #69T-G121.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57.20

Retrieve articles in all journals with MSC: 57.20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0278320-X
Keywords: Monotone, acyclic, cellular, open, differentiable, real analytic maps
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society