Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Quasiconformal mappings and Royden algebras in space


Author: Lawrence G. Lewis
Journal: Trans. Amer. Math. Soc. 158 (1971), 481-492
MSC: Primary 30.47
DOI: https://doi.org/10.1090/S0002-9947-1971-0281912-5
MathSciNet review: 0281912
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: On every open connected set $ G$ in Euclidean $ n$-space $ {R^n}$ and for every index $ p > 1$, we define the Royden $ p$-algebra $ {M_p}(G)$. We use results by F. W. Gehring and W. P. Ziemer to prove that two such sets $ G$ and $ G'$ are quasiconformally equivalent if and only if their Royden $ n$-algebras are isomorphic as Banach algebras. Moreover, every such algebra isomorphism is given by composition with a quasiconformal homeomorphism between $ G$ and $ G'$. This generalizes a theorem by M. Nakai concerning Riemann surfaces. In case $ p \ne n$, the only homeomorphisms which induce an isomorphism of the $ p$-algebras are the locally bi-Lipschitz mappings, and for $ 1 < p < n$, every such isomorphism arises this way. Under certain restrictions on the domains, these results extend to the Sobolev space $ H_p^1(G)$ and characterize those homeomorphisms which preserve the $ H_p^1$ classes.


References [Enhancements On Off] (What's this?)

  • [1] C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Springer-Verlag, Berlin, 1963. MR 28 #3151. MR 0159935 (28:3151)
  • [2] F. W. Gehring, Symmetrization of rings in space, Trans. Amer. Math. Soc. 101 (1961), 499-519. MR 24 #A2677. MR 0132841 (24:A2677)
  • [3] -, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353-393. MR 25 #3166. MR 0139735 (25:3166)
  • [4] -, Extremal length definitions for the conformal capacity of rings in space, Michigan Math. J. 9 (1962), 137-150. MR 25 #4098. MR 0140683 (25:4098)
  • [5] -, Lipschitz mappings and the $ p$-capacity of rings in $ n$-space, Proc. Sympos. Pure Math., vol. 20, Amer. Math. Soc., Providence, R. I., 1971.
  • [6] F. W. Gehring and J. Väisälä, The coefficients of quasiconformality of domains in space, Acta Math. 114 (1965), 1-70. MR 31 #4905. MR 0180674 (31:4905)
  • [7] L. V. Kantorovič and G. P. Akilov, Functional analysis in normed spaces, Fizmatgiz, Moscow, 1959; English transl., Internat. Series of Monographs in Pure and Appl. Math., vol. 46, Macmillan, New York, 1964. MR 22 #9837; MR 35 #4699. MR 0119071 (22:9837)
  • [8] C. Loewner, On the conformal capacity in space, J. Math. Mech. 8 (1959), 411-414. MR 21 #3538. MR 0104785 (21:3538)
  • [9] L. H. Loomis, An introduction to abstract harmonic analysis, Van Nostrand, Princeton, N. J., 1953. MR 14, 883. MR 0054173 (14:883c)
  • [10] C. B. Morrey, Jr., Multiple integrals in the calculus of variations, Springer-Verlag, New York, 1966. MR 34 #2380. MR 0202511 (34:2380)
  • [11] G. D. Mostow, Quasi-conformal mappings in $ n$-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. No. 34 (1968), 53-104. MR 38 #4679. MR 0236383 (38:4679)
  • [12] M. Nakai, Algebraic criterion on quasiconformal equivalence of Riemann surfaces, Nagoya Math. J. 16 (1960), 157-184. MR 22 #1669. MR 0110801 (22:1669)
  • [13] -, Some topological properties on Royden's compactification of a Riemann surface, Proc. Japan. Acad. 36 (1960), 555-559. MR 23 #A102. MR 0123702 (23:A1024)
  • [14] H. M. Reimann, Über harmonische Kapazität und quasikonforme Abbildungen im Raum, Comment. Math. Helv. 44 (1969), 284-307. MR 40 #5856. MR 0252637 (40:5856)
  • [15] H. Royden, On the ideal boundary of a Riemann surface, Contributions to the Theory of Riemann Surfaces, Ann. of Math. Studies, no. 30, Princeton Univ. Press, Princeton, N. J. 1953. MR 15, 25. MR 0056098 (15:25c)
  • [16] -, Real analysis, 2nd ed., Macmillan, New York, 1968.
  • [17] S. Saks, Theory of the integral, 2nd rev. ed., Dover, New York, 1964. MR 29 #4850. MR 0167578 (29:4850)
  • [18] S. Sobolev, Applications of functional analysis in mathematical physics, Izdat. Leningrad. Gos. Univ., Leningrad, 1950; English transl., Transl. Math. Monographs, vol. 7, Amer. Math. Soc., Providence, R. I., 1963. MR 14, 565; MR 29 #2624. MR 0165337 (29:2624)
  • [19] J. Väisälä, On quasiconformal mappings in space, Ann. Acad. Sci. Fenn. Ser. A. I. No. 298 (1961), 1-36. MR 25 #4100a. MR 0140685 (25:4100a)
  • [20] W. Ziemer, Change of variables for absolutely continuous functions, Duke Math. J. 36 (1969), 171-178. MR 38 #6006. MR 0237725 (38:6006)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30.47

Retrieve articles in all journals with MSC: 30.47


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0281912-5
Keywords: Royden algebra, quasiconformal mappings, Sobolev space, Royden compactification, bi-Lipschitz mapping, $ p$-capacity, conformal capacity
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society