Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Value distribution of harmonic polynomials in several real variables.

Author: Morris Marden
Journal: Trans. Amer. Math. Soc. 159 (1971), 137-154
MSC: Primary 31.11
MathSciNet review: 0279323
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using Bergman's integral operator method, the author studies an arbitrary axisymmetric harmonic polynomial $ H(x,\rho )$ in $ {R^3}$ and $ {R^N}$ in relation to its associate polynomial $ h(\zeta )$ in $ C$. His results pertain to the value distributions and critical circles of $ H(x,\rho )$ in certain cones; bounds on the gradient of an $ H(x,\rho )$ assumed bounded in sphere $ {x^2} + {\rho ^2} \leqq 1$; axisymmetric harmonic vectors. Corresponding results are also obtained for axisymmetric harmonic functions $ F(x,\rho )$ with rational associate $ f(\zeta )$.

References [Enhancements On Off] (What's this?)

  • [1] Stefan Bergman, Integral operators in the theory of linear partial differential equations, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Heft 23, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961. MR 0141880
  • [2] Robert P. Gilbert, Function theoretic methods in partial differential equations, Mathematics in Science and Engineering, Vol. 54, Academic Press, New York-London, 1969. MR 0241789
  • [3] Morris Marden, Geometry of polynomials, Second edition. Mathematical Surveys, No. 3, American Mathematical Society, Providence, R.I., 1966. MR 0225972
  • [4] Serge Bernstein, Leçons sur propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle, Gauthier-Villars, Paris, 1926.
  • [5] E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469
  • [6] Oliver Dimon Kellogg, Foundations of potential theory, Reprint from the first edition of 1929. Die Grundlehren der Mathematischen Wissenschaften, Band 31, Springer-Verlag, Berlin-New York, 1967. MR 0222317
  • [7] Morris Marden, Axisymmetric harmonic vectors, Amer. J. Math. 67 (1945), 109–122. MR 0013982,

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 31.11

Retrieve articles in all journals with MSC: 31.11

Additional Information

Keywords: Axisymmetric harmonic polynomials, Bergman integral method, analytic theory of polynomials, coincidence theorems, axisymmetric harmonic functions, gradient of bounded harmonic polynomials, Bernstein's Theorem, critical circles of axisymmetric harmonic polynomials, axisymmetric harmonic vectors, axisymmetric flow potential, Stoke's stream function
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society