Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Maximal and minimal topologies


Author: Douglas E. Cameron
Journal: Trans. Amer. Math. Soc. 160 (1971), 229-248
MSC: Primary 54.20
DOI: https://doi.org/10.1090/S0002-9947-1971-0281142-7
MathSciNet review: 0281142
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A topological space $ (X,T)$ with property $ {\text{R}}$ is maximal $ {\text{R}}$ (minimal $ {\text{R}}$) if $ T$ is a maximal (minimal) element in the set $ {\text{R}}(X)$ of all topologies on the set $ X$ having property $ {\text{R}}$ with the partial ordering of set inclusions. The properties of maximal topologies for compactness, countable compactness, sequential compactness, Bolzano-Weierstrass compactness, and Lindelöf are investigated and the relations between these spaces are investigated. The question of whether any space having one of these properties has a strictly stronger maximal topology is investigated. Some interesting product theorems are discussed. The properties of minimal topologies and their relationships are discussed for the quasi-$ P$, Hausdorff quasi-$ P$, and $ P$ topologies.


References [Enhancements On Off] (What's this?)

  • [1] P. Alexandrov and P. Urysohn, Une condition nécessaire et suffisante pour qu'une classe $ \mathfrak{L}$ soit une classe $ \mathfrak{D}$, C. R. Acad. Sci. Paris 177 (1923), 1274-1276.
  • [2] C. E. Aull, A certain class of topological spaces, Prace Mat. 11 (1967), 49-53. MR 37 #3498. MR 0227914 (37:3498)
  • [3] C. E. Aull, Sequences in topological spaces, Notices Amer. Math. Soc. 12 (1965), 222. Abstract #65T-79.
  • [4] -, Sequences in topological spaces, Prace Mat. 11 (1968), 329-336. MR 37 #2169. MR 0226580 (37:2169)
  • [5] M. P. Berri, Minimal topological spaces, Trans. Amer. Math. Soc. 108 (1963), 97-105. MR 27 #711. MR 0150724 (27:711)
  • [6] M. P. Berri, J. R. Porter and R. M. Stephenson, Jr., General topology and its relation to modern analysis and algebra. III, Proc. Conference Topology (Kanpur, 1968), Academic Press, New York, 1970.
  • [7] N. Bourbaki, Espaces minimaux et espaces completement séparés, C. R. Acad. Sci. Paris 212 (1941), 215-218. MR 0005322 (3:136f)
  • [8] -, Topologie générale, 3rd ed., Actualités Sci. Indust., no. 1142, Hermann, Paris, 1961. MR 25 #4480.
  • [9] M. Fréchet, Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo 22 (1906), 1-74.
  • [10] Z. Frolik, Generalisations of compact and Lindelöf spaces, Czechoslovak Math. J. 9 (84) (1959), 172-217. (Russian) MR 21 #3821. MR 0105075 (21:3821)
  • [11] L. Gillman and M. Jerison, Rings of continuous functions, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #6994. MR 0116199 (22:6994)
  • [12] E. Hewitt, A problem of set theoretic topology, Duke Math. J. 10 (1943), 309-333. MR 5, 46. MR 0008692 (5:46e)
  • [13] Shogo Ikenaga, Product of minimal topological spaces, Proc. Japan Acad. 40 (1964), 329-331. MR 29 #5213. MR 0167948 (29:5213)
  • [14] J. E. Joseph, Continuous functions and spaces in which compact sets are closed, Amer. Math. Monthly 76 (1969), 1125-1126. MR 40 #8018. MR 0254811 (40:8018)
  • [15] C. Kuratowski, Topologie. Vol. I, 3rd ed., PWN, Warsaw, 1952; English transl., Academic Press, New York; PWN, Warsaw, 1966. MR 14, 1000. MR 0054232 (14:892a)
  • [16] R. E. Larson, Minimum and maximum topological spaces, Notices Amer. Math. Soc. 16 (1969), 847. Abstract #69T-G99. MR 0276914 (43:2654)
  • [17] N. Levine, Simple extensions of topologies, Amer. Math. Monthly 71 (1964), 22-25. MR 29 #580. MR 0163277 (29:580)
  • [18] -, When are compact and closed equivalent?, Amer. Math. Monthly 72 (1965), 41-44.
  • [19] A. S. Parhomenko, Über eineindeutige stetige Abbildungen, Mat. Sb. 5 (47) (1939), 197-210. (Russian) MR 1, 221.
  • [20] J. R. Porter, Minimal first countable spaces, Bull. Austral. Math. Soc. 3 (1970), 55-64. MR 0268849 (42:3746)
  • [21] J. R. Porter and J. Thomas, On $ H$-closed and minimal Hausdorff spaces, Trans. Amer. Math. Soc. 138 (1969), 159-170. MR 38 #6544. MR 0238268 (38:6544)
  • [22] A. Ramanathan, A characterization of maximal-Hausdorff spaces, J. Indian Math. Soc. 11 (1947), 73-80. MR 10, 137. MR 0026315 (10:137a)
  • [23] -, Maximal-Hausdorff spaces, Proc. Indian Acad. Sci. Sec. A 26 (1947), 31-42. MR 9, 98. MR 0021682 (9:98d)
  • [24] -, Minimal-bicompact spaces, J. Indian Math. Soc. 12 (1948), 40-46. MR 10, 390; 856. MR 0028010 (10:390a)
  • [25] C. T. Scarborough and A. H. Stone, Products of nearly compact spaces, Trans. Amer. Math. Soc. 124 (1966), 131-147. MR 34 #3528. MR 0203679 (34:3528)
  • [26] N. Smythe and C. A. Wilkins, Minimal Hausdorff and maximal compact spaces, J. Austral. Math. Soc. 3 (1963), 167-171. MR 27 #4204. MR 0154254 (27:4204)
  • [27] R. M. Stephenson, Jr., Minimal first countable topologies, Trans. Amer. Math. Soc. 138 (1969), 115-127. MR 38 #6537. MR 0238261 (38:6537)
  • [28] J. Pelham Thomas, Maximal connected topologies, J. Austral. Math. Soc. 8 (1968), 700-705. MR 38 #5177. MR 0236884 (38:5177)
  • [29] W. J. Thron, Topological structures, Holt, Rinehart and Winston, New York, 1966. MR 34 #778. MR 0200892 (34:778)
  • [30] Hing Tong, Note on minimal bicompact spaces (preliminary report), Bull. Amer. Math. Soc. 54 (1948), 478-479.
  • [31] P. Urysohn, Sur les classes $ \mathfrak{L}$ de M. Fréchet, Enseignement Math. 25 (1926), 77-83.
  • [32] -, Über die Machtigkeit der zusammenhangen Mengen, Math. Ann. 94 (1925), 262-295. MR 1512258
  • [33] R. Vaidyanathaswamy, Set topology, Chelsea, New York, 1947.
  • [34] G. Vigilino, A co-topological application to minimal spaces, Pacific J. Math. 27 (1969), 197-200. MR 0263009 (41:7614)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54.20

Retrieve articles in all journals with MSC: 54.20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0281142-7
Keywords: Maximal topologies, minimal topologies, compactness, countable compactness, sequential compactness, Bolzano-Weierstrass compactness, Lindelöf, quasi-$ P$-spaces, Hausdorff quasi-$ P$-spaces, $ P$-spaces, strongly $ {\text{R}}$ topologies
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society