Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Expandibility and collectionwise normality


Authors: J. C. Smith and L. L. Krajewski
Journal: Trans. Amer. Math. Soc. 160 (1971), 437-451
MSC: Primary 54.20
DOI: https://doi.org/10.1090/S0002-9947-1971-0284966-5
MathSciNet review: 0284966
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In 1958 M. Katětov proved that in a normal space $ X,X$ is expandable if and only if $ X$ is collectionwise normal and countably paracompact. This result has since been used to answer many questions in various areas of general topology. In this paper Katětov's theorem is generalized for nonnormal spaces and various characterizations of collectionwise normality are shown. Results concerning metrization, paracompactness, sum theorems, product theorems, mapping theorems and $ M$-spaces are then obtained as applications of these new theorems.


References [Enhancements On Off] (What's this?)

  • [1] O. T. Alas, Letter to the author.
  • [2] A. Arhangel'skiĭ, On mappings and metric spaces, Dokl. Akad. Nauk SSSR 145 (1962), 245-247 = Soviet Math. Dokl. 3 (1962), 953-956. MR 25 #2579. MR 0139141 (25:2579)
  • [3] C. E. Aull, A note on countably paracompact spaces and metrization, Proc. Amer. Math. Soc. 16 (1965), 1316-1317. MR 32 #3039. MR 0185575 (32:3039)
  • [4] R. H. Bing, Metrization of topological spaces, Canad. J. Math. 3 (1951), 175-186. MR 13, 264. MR 0043449 (13:264f)
  • [5] D. K. Burke, On subparacompact spaces. Proc. Amer. Math. Soc. 23 (1969), 655-663. MR 40 #3508. MR 0250269 (40:3508)
  • [6] D. K. Burke, On $ p$-spaces and $ W\Delta $-spaces, Pacific J. Math. 35 (1970), 285-296. MR 0278255 (43:3986)
  • [7] S. Hanai, Inverse images of closed mappings. I, Proc. Japan Acad. 37 (1961), 298-301. MR 25 #2576. MR 0139138 (25:2576)
  • [8] R. W. Heath, Screenability, pointwise paracompactness, and metrization of Moore spaces, Canad. J. Math. 16 (1964), 763-770. MR 29 #4033. MR 0166760 (29:4033)
  • [9] R. E. Hodel, Sum theorems for topological spaces, Pacific J. Math. 30 (1969), 59-65. MR 40 #6502. MR 0253287 (40:6502)
  • [10] -, A note on subparacompact spaces, Proc. Amer. Math. Soc. 25 (1970), 842-845. MR 0263024 (41:7629)
  • [11] T. Ishii, On closed mappings and $ M$-spaces. II, Proc. Japan Acad. 43 (1967), 757-761. MR 36 #5904. MR 0222854 (36:5904)
  • [12] Y. Katuta, On strongly normal spaces, Proc. Japan Acad. 45 (1969), 692-695. MR 0264606 (41:9198)
  • [13] M. Katětov, Extension of locally finite coverings, Colloq. Math. 6 (1958), 145-151. (Russian) MR 21 #2219. MR 0103450 (21:2219)
  • [14] L. L. Krajewski, Expanding locally finite collections, Canad. J. Math. 23 (1971), 58-68. MR 0271898 (42:6779)
  • [15] N. Lašnev, Closed images of metric spaces, Dokl. Akad. Nauk SSSR 170 (1966), 505-507 = Soviet Math. Dokl. 7 (1966), 1219-1221. MR 34 #3547. MR 0203698 (34:3547)
  • [16] J. E. Mack, Directed covers and paracompact spaces, Canad. J. Math. 19 (1967), 649-654. MR 35 #2263. MR 0211382 (35:2263)
  • [17] E. A. Michael, A note on paracompact spaces, Proc. Amer. Math. Soc. 4 (1953), 831-838. MR 15, 144. MR 0056905 (15:144b)
  • [18] -, Another note on paracompact spaces, Proc. Amer. Math. Soc. 8 (1957), 822-828. MR 19, 299. MR 0087079 (19:299c)
  • [19] -, Point finite and locally finite coverings, Canad. J. Math. 7 (1955), 275-279. MR 16, 1138. MR 0070147 (16:1138c)
  • [20] K. Morita, Products of normal spaces with metric spaces, Math. Ann. 154 (1964), 365-382. MR 29 #2773. MR 0165491 (29:2773)
  • [21] -, Some properties of $ M$-spaces, Proc. Japan Acad. 43 (1967), 869-872. MR 37 #3517. MR 0227933 (37:3517)
  • [22] K. Morita and S. Hanai, Closed mappings and metric spaces, Proc. Japan Acad. 32 (1956), 10-14. MR 19, 299. MR 0087077 (19:299a)
  • [23] K. Nagami, $ \Sigma $-spaces, Fund. Math. 65 (1969), 169-192. MR 0257963 (41:2612)
  • [24] A. Okuyama, Some generalizations of metric spaces, their metrization theorems and product spaces, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A9 (1968), 236-254. MR 37 #5846. MR 0230283 (37:5846)
  • [25] F. Siwiec and J. Nagata, A note on nets and metrization, Proc. Japan Acad. 44 (1968), 623-627. MR 39 #3450. MR 0242116 (39:3450)
  • [26] R. H. Sorgenfrey, On the topological product of paracompact spaces, Bull. Amer. Math. Soc. 53 (1947), 631-632. MR 8, 594. MR 0020770 (8:594f)
  • [27] J. M. Worrell, Jr. and H. H. Wicke, Characterizations of developable topological spaces, Canad. J. Math. 17 (1965), 820-830. MR 32 #427. MR 0182945 (32:427)
  • [28] P. Zenor, On countable paracompactness and normality, Prace Mat. 13 (1969), 23-32. MR 40 #1975. MR 0248724 (40:1975)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54.20

Retrieve articles in all journals with MSC: 54.20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0284966-5
Keywords: Expandable, boundedly expandable, almost expandable, discretely expandable, H.C. expandable, hereditarily conservative, paracompact, metacompact, subparacompact, $ \theta $-refinable, metrizable, uniform base, $ M$-space, $ \sigma $-space
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society