Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Metric properties of transformations of $ G$-spaces


Author: R. K. Thomas
Journal: Trans. Amer. Math. Soc. 160 (1971), 103-117
MSC: Primary 28A65
DOI: https://doi.org/10.1090/S0002-9947-1971-0293063-4
MathSciNet review: 0293063
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The measure-preserving transformation $ T$ acts on a Lebesgue space $ (M,\mathcal{B},\mu )$ which is also a $ G$-space for a compact separable group $ G$. It is proved that if the factor-transformation on the space of $ G$-orbits has completely positive entropy and a certain condition regarding the relations between the actions of $ G$ and $ T$ is satisfied, then $ T$ weakly mixing implies $ T$ has completely positive entropy.


References [Enhancements On Off] (What's this?)

  • [1] S. A. Juzvinskiĭ, Metric properties of endomorphisms of compact groups, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 1295-1328; English transl., Amer. Math. Soc. Transl. (2) 66 (1968), 63-98. MR 33 #2798. MR 0194588 (33:2798)
  • [2] V. A. Rohlin, Metric properties of endomorphisms of compact commutative groups, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 867-874; English transl., Amer. Math. Soc. Transl. (2) 64 (1967), 244-252. MR 29 #5955. MR 0168697 (29:5955)
  • [3] -, Lectures on the entropy theory of measure preserving transformations with invariant measure, Uspehi Mat. Nauk 22 (1967), no. 5 (137), 3-56 = Russian Math. Surveys 22 (1967), no. 5, 1-52. MR 36 #349. MR 0217258 (36:349)
  • [4] P. R. Halmos, Lectures on ergodic theory, Publ. Math. Soc. Japan, no. 3, Math. Soc. Japan, Tokyo, 1956. MR 20 #3958. MR 0097489 (20:3958)
  • [5] Ja. G. Sinaĭ, On the concept of entropy for a dynamic system, Dokl. Akad. Nauk SSSR 124 (1959), 768-771. (Russian) MR 21 #2036a. MR 0103256 (21:2036a)
  • [6] D. Z. Arov, Calculation of entropy for a class of group endomorphisms, Zap. Meh.-Mat. Fak. Har'kov. Gos. Univ. i Har'kov. Mat. Obšč. (4) 30 (1964), 48-69. (Russian) MR 35 #4368. MR 0213507 (35:4368)
  • [7] W. Parry, Ergodic properties of affine transformations and flows on nilmanifolds, Amer. J. Math. 91 (1969), 757-771. MR 0260975 (41:5595)
  • [8] J. Tits, Liesche Gruppen und Algebren, Mathematischen Institut, Bonn, 1965.
  • [9] G. W. Mackey, The theory of group representations, Lecture Notes (Summer, 1955), Department of Mathematics, University of Chicago, Chicago, Ill., 1955. MR 19, 117.
  • [10] I. Kaplansky, Groups with representations of bounded degree, Canad. J. Math. 1 (1949), 105-112. MR 10, 428. MR 0028317 (10:428f)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28A65

Retrieve articles in all journals with MSC: 28A65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0293063-4
Keywords: Completely positive entropy, $ G$-space, $ \sigma $-commuting
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society