Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Degenerate evolution equations in Hilbert space


Authors: Avner Friedman and Zeev Schuss
Journal: Trans. Amer. Math. Soc. 161 (1971), 401-427
MSC: Primary 47.60; Secondary 35.00
MathSciNet review: 0283623
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the degenerate evolution equation $ {c_1}(t)du/dt + {c_2}(t)A(t)u = f(t)$ in Hilbert space, where $ {c_1} \geqq 0,{c_2} \geqq 0,{c_1} + {c_2} > 0;A(t)$ is an unbounded linear operator satisfying the usual conditions which ensure that there is a unique solution for the Cauchy problem $ du/dt + A(t)u = f(t){\rm {in}}(0,T],u(0) = {u_0}$. We prove the existence and uniqueness of a weak solution, and differentiability theorems. Applications to degenerate parabolic equations are given.


References [Enhancements On Off] (What's this?)

  • [1] Gaetano Fichera, Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine, Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I. (8) 5 (1956), 1–30 (Italian). MR 0089348
  • [2] Gaetano Fichera, On a unified theory of boundary value problems for elliptic-parabolic equations of second order, Boundary problems in differential equations, Univ. of Wisconsin Press, Madison, 1960, pp. 97–120. MR 0111931
  • [3] Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
  • [4] Avner Friedman, Partial differential equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. MR 0445088
  • [5] V. P. Gluško and S. G. Kreĭn, Degenerate linear differential equations in a Banach space, Dokl. Akad. Nauk SSSR 181 (1968), 784–787 (Russian). MR 0232067
  • [6] J. J. Kohn and L. Nirenberg, Degenerate elliptic-parabolic equations of second order, Comm. Pure Appl. Math. 20 (1967), 797–872. MR 0234118
  • [7] O. A. Oleĭnik, On linear equations of the second order with a nonnegative characteristic form, Mat. Sb. 69 (111) (1966), 111-140. (Russian) MR 33 #1603.
  • [8] Claude Bardos and Haïm Brezis, Sur une classe de problèmes d’évolution non linéaires, J. Differential Equations 6 (1969), 345–394 (French). MR 0242020
  • [9] Haïm Brezis, On some degenerate nonlinear parabolic equations, Nonlinear Functional Analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, Ill., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 28–38. MR 0273468

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47.60, 35.00

Retrieve articles in all journals with MSC: 47.60, 35.00


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1971-0283623-9
Keywords: Evolution equations, degenerate equation, Cauchy problem, weak solution, existence, uniqueness, differentiability of solutions, parabolic equations
Article copyright: © Copyright 1971 American Mathematical Society