Quasi-disjointness in ergodic theory

Author:
Kenneth Berg

Journal:
Trans. Amer. Math. Soc. **162** (1971), 71-87

MSC:
Primary 28.70

MathSciNet review:
0284563

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We define and study a relationship, quasi-disjointness, between ergodic processes. A process is a measure-preserving transformation of a measure space onto itself, and ergodicity means that the space cannot be written as a disjoint union of invariant pieces, unless one of the pieces is of zero measure. We restrict our attention to spaces of total measure one which also satisfy additional regularity properties. In particular, the associated Hilbert space of square-summable functions is separable. A simple class of examples is given by translation by a fixed element on a compact Abelian metrizable group, such processes being known as Kronecker processes. We introduce the notion of a maximal common Kronecker factor (or quotient) process for two processes. Quasi-disjointness is a notion tied to the homomorphisms from two processes into their maximal common Kronecker factor, and reduces to a previous notion, disjointness, when that factor is trivial. We show that a substantial class of processes, the Weyl processes, are quasi-disjoint from every ergodic process. As a corollary, we show that a Weyl process and an ergodic process are disjoint if and only if they have no nontrivial Kronecker factor in common, or, equivalently, if they form an ergodic product. We give an example which suggests an analogous theory could be constructed in topological dynamics.

**[1]**Sterling K. Berberian,*Notes on spectral theory*, Van Nostrand Mathematical Studies, No. 5, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR**0190760****[2]**J. R. Blum and D. L. Hanson,*On invariant probability measures*. I, Pacific J. Math.**10**(1960), 1125-1129. MR**24**#A3260.**[3]**N. Bourbaki,*Eléments de mathématique. XIII. Première partie: Les structures fondamentales de l’analyse. Livre VI: Intégration. Chapitre I: Inégalités de convexité. Chapitre II: Espaces de Riesz. Chapitre III: Mesures sur les espaces localement compacts. Chapitre IV: Prolongement d’une mesure; espaces 𝐿^{𝑝}*, Actualités Sci. Ind., no. 1175, Hermann et Cie, Paris, 1952 (French). MR**0054691****[4]**Harry Furstenberg,*Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation*, Math. Systems Theory**1**(1967), 1–49. MR**0213508****[5]**F. J. Hahn,*On affine transformations of compact abelian groups*, Amer. J. Math.**85**(1963), 428–446. MR**0155956****[6]**Frank Hahn and William Parry,*Minimal dynamical systems with quasi-discrete spectrum*, J. London Math. Soc.**40**(1965), 309–323. MR**0175107****[7]**Frank Hahn and William Parry,*Some characteristic properties of dynamical systems with quasi-discrete spectra*, Math. Systems Theory**2**(1968), 179–190. MR**0230877****[8]**Paul R. Halmos,*Lectures on ergodic theory*, Chelsea Publishing Co., New York, 1960. MR**0111817****[9]**-,*Introduction to Hilbert space and the theory of spectral multiplicity*, Chelsea, New York, 1951. MR**13**, 563.**[10]**Paul R. Halmos,*Measure Theory*, D. Van Nostrand Company, Inc., New York, N. Y., 1950. MR**0033869****[11]**George W. Mackey,*Borel structure in groups and their duals*, Trans. Amer. Math. Soc.**85**(1957), 134–165. MR**0089999**, 10.1090/S0002-9947-1957-0089999-2**[12]**Paul-A. Meyer,*Probability and potentials*, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1966. MR**0205288****[13]**H. L. Royden,*Real analysis*, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1963. MR**0151555****[14]**V. S. Varadarajan,*Groups of automorphisms of Borel spaces*, Trans. Amer. Math. Soc.**109**(1963), 191–220. MR**0159923**, 10.1090/S0002-9947-1963-0159923-5

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
28.70

Retrieve articles in all journals with MSC: 28.70

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1971-0284563-1

Keywords:
Ergodic process,
spectral measure,
Weyl process,
ergodic group extension,
disjoint processes,
ergodic decomposition,
disintegration of a measure,
Kronecker process

Article copyright:
© Copyright 1971
American Mathematical Society