Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Bergman minimal domains in several complex variables


Authors: Shigeo Ozaki and Sadao Katô
Journal: Trans. Amer. Math. Soc. 162 (1971), 63-69
MSC: Primary 32H05
DOI: https://doi.org/10.1090/S0002-9947-1971-0294695-X
MathSciNet review: 0294695
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: K. T. Hahn has obtained the inequality between the Jacobians of a biholomorphic mapping and a holomorphic automorphism of a Bergman minimal domain. This paper extends Hahn's result. Some inequalities concerning Jacobians of the mappings of minimal domains onto another minimal domain are considered, and an example is given.


References [Enhancements On Off] (What's this?)

  • [1] S. Bergman, Sur les fonctions orthogonales de plusieurs variables complexes avec les applications à la théorie des fonctions analytiques, Mémor. Sci. Math., no. 106, Gauthier-Villars, Paris, 1947. MR 11, 344. MR 0032776 (11:344h)
  • [2] -, Sur la fonction-noyau d'un domaine et ses applications dans la théorie des transformations pseudo-conformes, Mémor. Sci. Math., no. 108, Gauthier-Villars, Paris, 1948. MR 11, 344.
  • [3] -, The kernel function and conformal mapping, Math. Surveys, no. 5, Amer. Math. Soc., Providence, R. I., 1950. MR 12, 402. MR 0038439 (12:402a)
  • [4] K. T. Hahn and J. Mitchell, Generalization of Schwarz-Pick lemma to invariant volume in a Kähler manifold, Trans. Amer. Math. Soc. 128 (1967), 221-231. MR 39 #4444. MR 0243120 (39:4444)
  • [5] K. T. Hahn, Some properties of relative invariants on bounded domains, Duke Math. J. 34 (1967), 325-332. MR 35 #5658. MR 0214809 (35:5658)
  • [6] S. Katō, Theorems in several complex variables, Rep. Fac. Tech. Kanagawa Univ. 4 (1965), 7-27.
  • [7] -, Canonical domains in several complex variables, Pacific J. Math. 21 (1967), 279-291. MR 35 #5659. MR 0214810 (35:5659)
  • [8] -, Mitchell minimal domains in several complex variables, Duke Math. J. 37 (1970), 139-143. MR 40 #7475. MR 0254266 (40:7475)
  • [9] M. Maschler, Minimal domains and their Bergman kernel function, Pacific J. Math. 6 (1956), 501-516. MR 18, 473. MR 0081951 (18:473a)
  • [10] S. Ozaki and I. Ono, Analytic functions of several complex variables, Sci. Rep. Tokyo Bunrika Daigaku A. 4 (1953), 262-270. MR 15, 117. MR 0056714 (15:117a)
  • [11] T. Tsuboi, Bergman representative domains and minimal domains, Japan. J. Math. 29 (1959), 141-148. MR 22 #12242. MR 0121504 (22:12242)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32H05

Retrieve articles in all journals with MSC: 32H05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0294695-X
Keywords: Bergman kernel function, minimal domain, biholomorphic mapping, holomorphic automorphism, relative invariant
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society