Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The local spectral behavior of completely subnormal operators


Authors: K. F. Clancey and C. R. Putnam
Journal: Trans. Amer. Math. Soc. 163 (1972), 239-244
MSC: Primary 47B20
DOI: https://doi.org/10.1090/S0002-9947-1972-0291844-5
MathSciNet review: 0291844
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For any compact set $ X$, let $ C(X)$ denote the continuous functions on $ X$ and $ R(X)$ the functions on $ X$ which are uniformly approximable by rational functions with poles off $ X$. Let $ A$ denote a subnormal operator having no reducing space on which it is normal. It is shown that a necessary and sufficient condition that $ X$ be the spectrum of such an operator $ A$ is that $ R(X \cap \overline D ) \ne C(X \cap \overline D )$ whenever $ D$ is an open disk intersecting $ X$ in a nonempty set.


References [Enhancements On Off] (What's this?)

  • [1] J. Bram, Subnormal operators, Duke Math. J. 22 (1955), 75-94. MR 16, 835. MR 0068129 (16:835a)
  • [2] K. F. Clancey and C. R. Putnam, The spectra of hyponormal integral operators, Comment. Math. Helv. (to appear). MR 0301573 (46:731)
  • [3] T. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N. J., 1969. MR 0410387 (53:14137)
  • [4] P. R. Halmos, Normal dilations and extensions of operators, Summa Brasil. Math. 2 (1950), 125-134. MR 13, 359. MR 0044036 (13:359b)
  • [5] -, Spectra and spectral manifolds, Ann. Soc. Polon. Math. 25 (1952), 43-49. MR 14, 1096. MR 0055581 (14:1096a)
  • [6] -, A Hilbert space problem book, Van Nostrand, Princeton, N. J., 1967. MR 34 #8178. MR 0208368 (34:8178)
  • [7] P. R. Halmos, G. Lumer and J. J. Schäffer, Square roots of operators, Proc. Amer. Math. Soc. 4 (1953), 142-149. MR 14, 767. MR 0053391 (14:767a)
  • [8] A. Lebow, On von Neumann's theory of spectral sets, J. Math. Anal. Appl. 7 (1963), 64-90. MR 27 #6149. MR 0156220 (27:6149)
  • [9] C. R. Putnam, An inequality for the area of hyponormal spectra, Math. Z. 116 (1970), 323-330. MR 0270193 (42:5085)
  • [10] -, The spectra of subnormal operators, Proc. Amer. Math. Soc. 28 (1971), 473-477. MR 0275215 (43:972)
  • [11] -, The spectra of completely hyponormal operators, Amer. J. Math. (to appear). MR 0281038 (43:6757)
  • [12] W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966. MR 35 #1420. MR 0210528 (35:1420)
  • [13] J. Wermer, Report on subnormal operators, Report of an International Conference on Operator Theory and Group Representations, Arden House, Harriman, N. Y., 1955, pp. 1-3; Publ. #387, National Academy of Sciences-National Research Council, Washington, D.C., 1955. MR 17, 880. MR 0076316 (17:880c)
  • [14] L. Zalcman, Analytic capacity and rational approximation, Lecture Notes in Math., no. 50, Springer-Verlag, Berlin and New York, 1968. MR 37 #3018. MR 0227434 (37:3018)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47B20

Retrieve articles in all journals with MSC: 47B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0291844-5
Keywords: Subnormal operators, hyponormal operators, spectrum, spectral sets, approximation by continuous functions, approximation by rational functions
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society