Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Symmetric Massey products and a Hirsch formula in homology


Author: Stanley O. Kochman
Journal: Trans. Amer. Math. Soc. 163 (1972), 245-260
MSC: Primary 55G30; Secondary 55B40, 55D35
DOI: https://doi.org/10.1090/S0002-9947-1972-0331388-5
MathSciNet review: 0331388
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A Hirsch formula is proved for the singular chains of a second loop space and is applied to show that the symmetric Massey produce $ {\langle x\rangle ^p}$ is defined for $ x$ an odd dimensional $ \bmod p$ homology class of a second loop space with $ p$ an odd prime. $ {\langle x\rangle ^p}$ is then interpreted in terms of the Dyer-Lashof and Browder operations.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, On the cobar construction, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 409-412. MR 18, 59. MR 0079266 (18:59c)
  • [2] -, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20-104. MR 25 #4530. MR 0141119 (25:4530)
  • [3] W. Browder, Homology operations and loop spaces, Illinois J. Math. 4 (1960), 347-357. MR 22 #11395. MR 0120646 (22:11395)
  • [4] A. Clark, A homology transgression theorem, Duke Math. J. 35 (1968), 169-173. MR 36 #3359. MR 0220293 (36:3359)
  • [5] E. Dyer and R. K. Lashof, Homology of iterated loop spaces, Amer. J. Math. 84 (1962), 35-88. MR 25 #4523. MR 0141112 (25:4523)
  • [6] S. Eilenberg and S. Mac Lane, On the groups of $ H(\pi ,n)$. I, Ann. of Math. (2) 58 (1953), 55-106. MR 15, 54. MR 0056295 (15:54b)
  • [7] -, On the groups $ H(\pi ,n)$. II. Methods of computation, Ann. of Math. (2) 60 (1954), 49-139. MR 16, 391. MR 0065162 (16:391a)
  • [8] G. Hirsch, Quelques propriétés des produits de Steenrod, CR. Acad. Sci. Paris 241 (1955), 923-925. MR 17, 396. MR 0073182 (17:396c)
  • [9] N. Jacobson, Lie algebras, Interscience Tracts in Pure and Appl. Math., no. 10, Interscience, New York, 1962. MR 26 #1345. MR 0143793 (26:1345)
  • [10] D. Kraines, Massey higher products, Trans. Amer. Math. Soc. 124 (1966), 431-449. MR 34 #2010. MR 0202136 (34:2010)
  • [11] -, Primitive chains and $ {H_\ast}(\Omega X)$, Topology 8 (1969), 31-38. MR 38 #6581. MR 0238305 (38:6581)
  • [12] J. P. May, The cohomology of restricted Lie algebras and of Hopf algebras, J. Algebra 3 (1966), 123-146. MR 33 #1347. MR 0193126 (33:1347)
  • [13] -, Matric Massey products, J. Algebra 12 (1969), 533-568. MR 39 #289. MR 0238929 (39:289)
  • [14] -, The structure and applications of the Eilenberg-Moore spectral sequence (to appear).
  • [15] -, A general algebraic approach to Steenrod operations, Lecture Notes in Math., no. 168, Springer-Verlag, New York, 1970, pp. 153-231. MR 0281196 (43:6915)
  • [16] J. W. Milnor, Construction of universal bundles. II, Ann. of Math. (2) 63 (1956), 430-436. MR 17, 1120. MR 0077932 (17:1120a)
  • [17] J. Moore, Homotopie des complexes monoidaux. I, Séminaire Henri Cartan 1954/55, Secrétariat mathématique, Paris, 1956. MR 19, 439.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55G30, 55B40, 55D35

Retrieve articles in all journals with MSC: 55G30, 55B40, 55D35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0331388-5
Keywords: Symmetric Massey product, Hirsch formula, Eilenberg-Moore spectral sequence, Dyer-Lashof operations, Browder operations, cobar construction
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society