Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



An energy inequality for higher order linear parabolic operators and its applications

Author: David Ellis
Journal: Trans. Amer. Math. Soc. 165 (1972), 167-206
MSC: Primary 47G05; Secondary 35S05
MathSciNet review: 0298482
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A generalization of the classical energy inequality is obtained for evolution operators $ (\partial /\partial t)I - H(t){\Lambda ^{2k}} - J(t)$, associated with higher order linear parabolic operators with variable coefficients. Here $ H(t)$ and $ J(t)$ are matrices of singular integral operators. The key to the result is an algebraic inequality involving matrices similar to the symbol of $ H(t)$ having their eigenvalues contained in a fixed compact subset of the open left-half complex plane. Then a sharp estimate on the norms of certain imbedding maps is obtained. These estimates along with the energy inequality is applied to the Cauchy problem for higher order linear parabolic operators restricted to slabs in $ {R^{n + 1}}$.

References [Enhancements On Off] (What's this?)

  • [1] S. Agmon, Lectures on elliptic boundary value problems, Van Nostrand Math. Studies, no. 2, Van Nostrand, Princeton, N. J., 1965. MR 31 #2504. MR 0178246 (31:2504)
  • [2] A. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190. MR 29 #5097. MR 0167830 (29:5097)
  • [3] -, Singular integrals, Bull. Amer. Math. Soc. 72 (1966), 427-465. MR 35 #813. MR 0209918 (35:813)
  • [4] L. Hörmander, Linear partial differential operators, Die Grundlehren der math. Wissenschaften, Band 116, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #4221.
  • [5] S. Kaplan, An analogue of Gårding's inequality for parabolic operators and its applications, J. Math. Mech. 19 (1969), 171-188. MR 0603303 (58:29251)
  • [6] J. J. Köhn and L. Nirenberg, An algebra of pseudo-differential operators, Comm. Pure Appl. Math. 18 (1965), 269-305. MR 31 #636. MR 0176362 (31:636)
  • [7] B. Malgrange, Unicité du problème de Cauchy. Division des distributions, Séminaire Schwartz 4e année 1959/60, Faculté des Sciences, Paris, 1960, pp. 1-44. MR 23 #A2275.
  • [8] G. E. Šilov, Mathematical analysis: Second special course, ``Nauka", Moscow, 1965; English transl., Generalized functions and partial differential equations, Gordon and Breach, New York, 1968. MR 36 #2943; MR 37 #5694. MR 0219869 (36:2943)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47G05, 35S05

Retrieve articles in all journals with MSC: 47G05, 35S05

Additional Information

Keywords: Partial differential operator, evolution operator, singular integral operator, symbol of an operator, test function, temperate weight function, compact support, Sobolev space
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society