Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Sets of uniqueness on the $ 2$-torus


Author: Victor L. Shapiro
Journal: Trans. Amer. Math. Soc. 165 (1972), 127-147
MSC: Primary 42A92; Secondary 43A55
DOI: https://doi.org/10.1090/S0002-9947-1972-0308684-0
MathSciNet review: 0308684
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: $ {H^{(J)}}$-sets are defined on the 2-torus and the following results are established: (1) $ {H^{(J)}}$-sets are sets of uniqueness both for Abel summability and circular convergence of double trigonometric series; (2) a countable union of closed sets of uniqueness of type (A) (i.e., Abel summability) is also a set of uniqueness of type (A).


References [Enhancements On Off] (What's this?)

  • [1] L. D. Berkovitz, Circular summation and localization of double trigonometric series, Trans. Amer. Math. Soc. 70 (1951), 323-344. MR 12, 697. MR 0040464 (12:697b)
  • [2] R. L. Cooke, A Cantor-Lebesgue theorem for two dimensions, Notices Amer. Math. Soc. 17 (1970), 933-934. Abstract #678-B12.
  • [3] -, A Cantor-Lebesgue theorem in two dimensions, Proc. Amer. Math. Soc. 30 (1971), 547-550. MR 0282134 (43:7847)
  • [4] T. Radó, Subharmonic functions, Chelsea, New York, 1949.
  • [5] S. Saks, Theorie de l'integrale, Monografie Matematyczne, vol. 2, PWN, Warsaw, 1933; English transl., Monografie Mat., vol. 7, PWN, Warsaw, 1937. MR 29 #4850.
  • [6] V. L. Shapiro, Fourier series in several variables, Bull. Amer. Math. Soc. 70 (1964), 48-93. MR 28 #1448. MR 0158222 (28:1448)
  • [7] -, Uniqueness of multiple trigonometric series, Ann. of Math. (2) 66 (1957), 467-480. MR 19, 854; 1432. MR 0090700 (19:854d)
  • [8] -, Localization of conjugate multiple trigonometric series, Ann. of Math. (2) 61 (1955), 368-380. MR 16, 816. MR 0068027 (16:816e)
  • [9] -, The divergence theorem for discontinuous vector fields, Ann. of Math. (2) 68 (1958), 604-624. MR 20 #7153. MR 0100725 (20:7153)
  • [10] -, Removable sets for pointwise solutions of the generalized Cauchy-Riemann equations, Ann. of Math. (2) 92 (1970), 82-101. MR 0437898 (55:10819)
  • [11] A. Zygmund, Trigonometric series, 2nd ed., vol. 1, Cambridge Univ. Press, New York, 1959. MR 21 #6498. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42A92, 43A55

Retrieve articles in all journals with MSC: 42A92, 43A55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0308684-0
Keywords: Double trigonometric series, formal multiplication of trigonometric series, sets of uniqueness, torus, localization, normal sequence, Abel summability, Bochner-Riesz summability, Riemannian theory, Baire category
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society