Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Categorical $ W\sp{\ast} $-tensor product


Author: John Dauns
Journal: Trans. Amer. Math. Soc. 166 (1972), 439-456
MSC: Primary 46L10; Secondary 46M05
DOI: https://doi.org/10.1090/S0002-9947-1972-0295093-6
MathSciNet review: 0295093
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If A and B are von Neumann algebras and $ A\bar \otimes B$ denotes their categorical $ {C^ \ast }$-tensor product with the universal property, then the von Neumann tensor product $ A\nabla B$ of A and B is defined as

$\displaystyle A\nabla B = {(A\bar \otimes B)^{ \ast \ast }}/J,$

where $ J \subset {(A\bar \otimes B)^{\ast \ast}}$ is an appropriate ideal. It has the universal property.

References [Enhancements On Off] (What's this?)

  • [1] J. Dauns and K. H. Hofmann, Representation of rings by sections, Mem. Amer. Math. Soc. No. 83, Amer. Math. Soc., Providence, R. I., 1968, pp. 1-180. MR 40 #752. MR 0247487 (40:752)
  • [2] -, Spectral theory of algebras and adjunction of identity, Math. Ann. 179 (1969), 175-202. MR 40 #734. MR 0247468 (40:734)
  • [3] J. Dauns, Multiplier rings and primitive ideals, Trans. Amer. Math. Soc. 145 (1969), 125-158. MR 41 #1805. MR 0257151 (41:1805)
  • [4] J. Dixmier, Les $ {C^ \ast }$-algèbres et leurs représentations, 2nd ed., Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1969. MR 39 #7442. MR 0246136 (39:7442)
  • [5] P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236. MR 37 #4208. MR 0228628 (37:4208)
  • [6] A. Guichardet, Tensor products of $ {C^ \ast }$-algebras. Part I: Finite tensor products, Lecture Note Series, no. 12, Matematisk Institut, Aarhus Universitet, 1969.
  • [7] -, Tensor products of $ {C^ \ast }$-algebras. Part II: Finite tensor products, Lecture Note Series, no. 13, Matematisk Institut, Aarhus Universitet, 1969.
  • [8] K. H. Hofmann, The duality of compact semigroups and $ {C^ \ast }$-bialgebras, Lecture Notes in Math., vol. 129, Springer-Verlag, Berlin-New York, 1970, pp. 1-141. MR 0432803 (55:5786)
  • [9] Y. Misonou, On the direct product of $ {W^ \ast }$-algebras, Tôhoku Math. J. (2) 6 (1954), 189-204. MR 16, 1125. MR 0070064 (16:1125f)
  • [10] S. Sakai, The theory of $ {W^\ast}$-algebras, Lecture Notes, Yale University, New Haven, Conn., 1962.
  • [11] R. Schatten, A theory of cross-spaces, Ann. of Math. Studies, no. 26, Princeton Univ. Press, Princeton, N. J., 1950. MR 12, 186. MR 0036935 (12:186e)
  • [12] -, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, N.F., Heft 27, Springer-Verlag, Berlin, 1960, pp. 1-81. MR 22 #9878. MR 0119112 (22:9878)
  • [13] E. M. Sweedler, Hopf algebras, Math. Lecture Note Series, Benjamin, New York, 1969. MR 40 #5705. MR 0252485 (40:5705)
  • [14] Z. Takeda, On the representations of operator algebras, Proc. Japan. Acad. 30 (1954), 299-304. MR 16, 146. MR 0063579 (16:146d)
  • [15] -, On the representations of operator algebras. II, Tôhoku Math. J. (2) 6 (1954), 212-219. MR 16, 1126.
  • [16] -, Conjugate spaces of operator algebras, Proc. Japan Acad. 30 (1954), 90-95. MR 16, 146. MR 0063578 (16:146c)
  • [17] M. Takesaki, On the conjugate space of operator algebra, Tôhoku Math. J. (2) 10 (1958), 194-203. MR 20 #7227. MR 0100799 (20:7227)
  • [18] -, On the cross-norm of the direct product of $ {C^ \ast }$-algebras, Tôhoku Math. J. (2) 16 (1964), 111-122. MR 29 #2668. MR 0165384 (29:2668)
  • [19] T. Turumaru, On the direct-product of operator algebras. I, Tôhoku Math. J. (2) 4 (1952), 242-251. MR 14, 991. MR 0054859 (14:991a)
  • [20] A. Wulfsohn, Produit tensoriel de $ {C^ \ast }$-algèbres, Bull. Sci. Math. (2) 87 (1963), 13-27. MR 29 #5121. MR 0167855 (29:5121)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46L10, 46M05

Retrieve articles in all journals with MSC: 46L10, 46M05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0295093-6
Keywords: von Neumann algebra, predual, categorical $ {C^ \ast }$-tensor product, normal, singular functionals, functors of multiplicative categories, adjoint functor, cogebras, bigebras
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society