Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Skew products of dynamical systems


Author: Eijun Kin
Journal: Trans. Amer. Math. Soc. 166 (1972), 27-43
MSC: Primary 28A65; Secondary 60B99
DOI: https://doi.org/10.1090/S0002-9947-1972-0296252-9
MathSciNet review: 0296252
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In 1950-1951, H. Anzai introduced a method of skew products of dynamical systems in connection with isomorphism problems in ergodic theory. There is a problem to give a necessary and sufficient condition under which an ergodic skew product dynamical system has pure point spectrum. For the special case, translations on the torus, he gave a partial answer for this question. However, this problem has been open in the general case.

In the present paper, we generalize the notion of skew products proposed by Anzai and give a complete answer for this problem.


References [Enhancements On Off] (What's this?)

  • [1] H. Anzai, Ergodic skew product transformations on the torus, Osaka Math. J. 3 (1951), 83-99. MR 12, 719. MR 0040594 (12:719d)
  • [2] È. Hopf, Ergodentheorie, Ergebnisse der Math., Band 5, no. 2, Springer-Verlag, Berlin, 1937, Chaps. 1-4. MR 10, 549.
  • [3] H. Anzai, Mixing up property of Brownian motion, Osaka Math. J. 2 (1950), 51-58. MR 12, 190. MR 0036953 (12:190d)
  • [4] E. Kin, Stable properties of Gaussian flows, Proc. Japan Acad. 46 (1970), 1116-1121. MR 0288232 (44:5430)
  • [5] S. Kakutani, Random ergodic theorems and Markoff processes with a stable distribution, Proc. Second Berkeley Sympos. Math. Statist. and Probability, 1950, Univ. of California Press, Berkeley, 1951, pp. 247-261. MR 13, 476. MR 0044773 (13:476a)
  • [6] C. Ryll-Nardzewski, On the ergodic theorems. III: The random ergodic theorem, Studia Math. 14 (1954), 298-301. MR 16, 910. MR 0068611 (16:910j)
  • [7] S. Gladysz, Ein ergodischer Satz, Studia Math. 15 (1956), 148-157. MR 18, 24. MR 0079071 (18:24e)
  • [8] -, Über den stochastischen Ergodensatz, Studia Math. 15 (1956), 158-173. MR 18, 24. MR 0079072 (18:24f)
  • [9] E. Kin, The general random ergodic theorem. I, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete (to appear). MR 0306449 (46:5575)
  • [10] C. Foiaş, Automorphisms of compact abelian groups as models for measure-preserving invertible transformations, Michigan Math. J. 13 (1966), 349-352. MR 33 #5837. MR 0197674 (33:5837)
  • [11] E. Kin, Dynamical systems of compact Abelian groups as models for non-singular flows (to appear).
  • [12] J. von Neumann, Zur Operatorenmethode in der klassischen Mechanik, Ann. of Math. 33 (1932), 587-642. MR 1503078
  • [13] H. Nomoto, On a class of metrical automorphisms on Gaussian measure space, Nagoya Math. J. 38 (1970), 21-25. MR 0435335 (55:8295)
  • [14] E. Kin, Ergodic and mixing properties of measure-preserving transformations, Proc. Japan Acad. 46 (1970), 47-50. MR 42 #465. MR 0265556 (42:465)
  • [15] L. M. Abramov, Metric automorphisms with quasi-discrete spectrum, Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 513-530; English transl., Amer. Math. Soc. Transl. (2) 39 (1964), 37-56. MR 26 #606. MR 0143040 (26:606)
  • [16] R. L. Adler, A note on the entropy of skew product transformations, Proc. Amer. Math. Soc. 14 (1963), 665-669. MR 27 #3779. MR 0153818 (27:3779)
  • [17] L. M. Abramov and V. A. Rohlin, The entropy of a skew product of measure-preserving transformations, Vestnik Leningrad. Univ. 17 (1962), no. 7, 5-13; English transl., Amer. Math. Soc. Transl. (2) 48 (1965), 255-265. MR 25 #4076. MR 0140660 (25:4076)
  • [18] D. Newton, On the entropy of certain classes of skew-product transformations, Proc. Amer. Math. Soc. 21 (1969), 722-726. MR 40 #1581. MR 0248329 (40:1581)
  • [19] L. M. Abramov, On the entropy of a flow, Dokl. Akad. Nauk SSSR 128 (1959), 873-875; English transl., Amer. Math. Soc. Transl. (2) 49 (1965), 167-170. MR 22 #4816. MR 0113985 (22:4816)
  • [20] V. A. Rohlin, On the fundamental ideas of measure theory, Mat. Sb. 25 (67) (1949), 107-150; English transl., Amer. Math. Soc. Transl. (1) 10 (1962), 1-54. MR 11, 18; MR 13, 924. MR 0030584 (11:18f)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28A65, 60B99

Retrieve articles in all journals with MSC: 28A65, 60B99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0296252-9
Keywords: Generalized flow, simple skew product, N-fold skew product, proper value function, Borel cycle, homology, quasigroup, generalized canonical flow, exact sequence, stability
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society