Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Oscillation and nonoscillation of solutions of generalized Emden-Fowler equations


Authors: C. V. Coffman and J. S. W. Wong
Journal: Trans. Amer. Math. Soc. 167 (1972), 399-434
MSC: Primary 34C10
DOI: https://doi.org/10.1090/S0002-9947-1972-0296413-9
MathSciNet review: 0296413
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper treats the ordinary differential equation $ y'' + yF({y^2},x) = 0,x > 0$ , where $ yF({y^2},x)$ is continuous in (y, x) for $ x > 0,\vert y\vert < \infty $, and $ F(t,x)$ is non-negative; the equation is assumed to be either of sublinear or superlinear type. Criteria are given for the equation to be oscillatory, to be nonoscillatory, to possess oscillatory solutions or to possess nonoscillatory solutions. An attempt has been made to unify the methods of treatment of the sublinear and superlinear cases. These methods consist primarily of comparison with linear equations and the use of ``energy'' functions. An Appendix treats the questions of continuability and uniqueness of solutions of the equation considered in the main text.


References [Enhancements On Off] (What's this?)

  • [1] F. V. Atkinson, On second-order non-linear oscillations, Pacific J. Math. 5 (1955), 643-647. MR 17, 264. MR 0072316 (17:264e)
  • [2] S. Belohorec, On some properties of the equation $ y''(x) + f(x){y^\alpha }(x) = 0,0 < \alpha < 1$, Mat. Časopis Sloven. Akad. Vied 17 (1967), 10-19. MR 35 #5703. MR 0214854 (35:5703)
  • [3] C. V. Coffman and J. S. W. Wong, On a second order nonlinear oscillation problem, Trans. Amer. Math. Soc. 147 (1970), 357-366. MR 41 #2123. MR 0257473 (41:2123)
  • [4] -, Second order nonlinear oscillations, Bull. Amer. Math. Soc. 75 (1969), 1379-1382. MR 40 #449. MR 0247180 (40:449)
  • [5] R. H. Fowler, Further studies of Emden's and similar differential equations, Quart. J. Math. 2 (1931), 259-288.
  • [6] J. W. Heidel, A nonoscillation theorem for a nonlinear second order differential equation, Proc. Amer. Math. Soc. 22 (1969), 485-488. MR 40 #1648. MR 0248396 (40:1648)
  • [7] M. Jasný, On the existence of an oscillating solution of the nonlinear differential equation of the second order $ y'' + f(x){y^{2n - 1}} = 0,f(x) > 0$, Časopis Pěst. Mat. 85 (1960), 78-83. (Russian) MR 26 #408. MR 0142840 (26:408)
  • [8] I. T. Kiguradze, On the conditions for oscillation of solutions of the differential equation $ u'' + a(t)\vert u{\vert^n}\operatorname{sgn} u = 0$, Časopis Pěst. Mat. 87 (1962), 492-495. (Russian) MR 31 #6026. MR 0181800 (31:6026)
  • [9] J. Kurzweil, A note on oscillatory solution of equation $ y'' + f(x){y^{2n - 1}} = 0$, Časopis Pěst. Mat. 85 (1960), 357-358. (Russian) MR 23 #A3322. MR 0126025 (23:A3322)
  • [10] J. W. Macki and J. S. W. Wong, Oscillation of solutions to second-order nonlinear differential equations, Pacific J. Math. 24 (1968), 111-117. MR 37 #507. MR 0224908 (37:507)
  • [11] Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc. 95 (1960), 101-123. MR 22 #2756. MR 0111898 (22:2756)
  • [12] -, Characteristic values associated with a class of nonlinear second-order differential equations, Acta Math. 105 (1961), 141-175. MR 23 #A1097. MR 0123775 (23:A1097)
  • [13] -, A nonlinear oscillation problem, J. Differential Equations 5 (1969), 452-460. MR 38 #3514. MR 0235203 (38:3514)
  • [14] J. S. W. Wong, Some properties of solutions of $ u''(t) + a(t)f(u)g(u') = 0$. III, SIAM J. Appl. Math. 14 (1966), 209-214. MR 34 #3020. MR 0203167 (34:3020)
  • [15] -, On second order nonlinear oscillation, Funkcial. Ekvac. 11 (1969), 207-234. MR 39 #7221. MR 0245915 (39:7221)
  • [A-1] C. V. Coffman and D. F. Ullrich, On the continuation of solutions of a certain nonlinear differential equation, Monatsh. Math. 71 (1967), 385-392. MR 37 #3078. MR 0227494 (37:3078)
  • [A-2] C. V. Coffman, On the positive solutions of boundary-value problems for a class of nonlinear differential equations, J. Differential Equations 3 (1967), 92-111. MR 34 #4593. MR 0204755 (34:4593)
  • [A-3] S. P. Hastings, Boundary value problems in one differential equation with a discontinuity, J. Differential Equations 1 (1965), 346-369. MR 31 #4954. MR 0180723 (31:4954)
  • [A-4] P. Hartman, Ordinary differential equations, Wiley, New York, 1964. MR 30 #1270. MR 0171038 (30:1270)
  • [A-5] J. W. Heidel, Uniqueness, continuation, and nonoscillation for a second order nonlinear differential equation, Pacific J. Math. (to appear). MR 0259244 (41:3886)
  • [A-6] D. V. Izjumova and I. T. Kiguradze, Some remarks on the solutions of the equation $ u'' + a(t)f(u) = 0$, Differencial'nye Uravnenija 4 (1968), 589-605. (Russian) MR 37 #3128. MR 0227544 (37:3128)
  • [A-7] R. M. Moroney, Note on a theorem of Nehari, Proc. Amer. Math. Soc. 13 (1962), 407-410. MR 26 #6479. MR 0148983 (26:6479)
  • [A-8] R. A. Moore and Z. Nehari, Nonoscillation theorems for a class of nonlinear differential equations, Trans. Amer. Math. Soc. 93 (1959), 30-52. MR 22 #2755. MR 0111897 (22:2755)
  • [A-9] D. F. Ullrich, Boundary value problems for a class of nonlinear second-order differential equations, J. Math. Anal. Appl. 28 (1969), 188-210. MR 39 #7203. MR 0245897 (39:7203)
  • [A-10] D. Willett and J. S. W. Wong, Some properties of the solutions of $ [p(t)x']' + q(t)f(x) = 0$, J. Math. Anal. Appl. 23 (1968), 15-24. MR 37 #1707. MR 0226117 (37:1707)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34C10

Retrieve articles in all journals with MSC: 34C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0296413-9
Keywords: Oscillation, nonoscillation, nonlinear
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society