Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Primitive ideals of $ C\sp{\ast} $-algebras associated with transformation groups


Author: Elliot C. Gootman
Journal: Trans. Amer. Math. Soc. 170 (1972), 97-108
MSC: Primary 22D25; Secondary 46L05
DOI: https://doi.org/10.1090/S0002-9947-1972-0302818-X
MathSciNet review: 0302818
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We extend results of E. G. Effros and F. Hahn concerning their conjecture that if $ (G,Z)$ is a second countable locally compact transformation group, with $ G$ amenable, then every primitive ideal of the associated $ {C^ \ast }$-algebra arises as the kernel of an irreducible representation induced from an isotropy subgroup. The conjecture is verified if all isotropy subgroups lie in the center of $ G$ and either (a) the restriction of each unitary representation of $ G$ to some open subgroup contains a one-dimensional subrepresentation, or (b) $ G$ has an open abelian subgroup and orbit closures in $ Z$ are compact and minimal.


References [Enhancements On Off] (What's this?)

  • [1] L. Auslander and C. C. Moore, Unitary representations of solvable Lie groups, Mem. Amer. Math. Soc. No. 62 (1966). MR 34 #7723. MR 0207910 (34:7723)
  • [2] R. J. Blattner, Positive definite measures, Proc. Amer. Math. Soc. 14 (1963), 423-428. MR 26 #5095. MR 0147580 (26:5095)
  • [3] N. Bourbaki, Éléments de mathématique. XVIII. Part I. Les structures fondamentales de l'analyse. Livre V: Espaces vectoriels topologiques. Chap. 4, Actualités Sci. Indust., no. 1229, Hermann, Paris, 1955. MR 17, 1109. MR 0077882 (17:1109d)
  • [4] R. C. Busby and H. A. Smith, Representations of twisted group algebras, Trans. Amer. Math. Soc. 149 (1970), 503-537. MR 41 #9013. MR 0264418 (41:9013)
  • [5] J. Dixmier, Algèbres quasi-unitaires, Comment. Math. Helv. 26 (1952), 275-322. MR 14, 660. MR 0052697 (14:660b)
  • [6] -, Les $ {C^ \ast }$-algèbres et leurs représentations, Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1964. MR 30 #1404. MR 0171173 (30:1404)
  • [7] S. Doplicher, D. Kastler and D. W. Robinson, Covariance algebras in field theory and statistical mechanics, Comm. Math. Phys. 3 (1966), 1-28. MR 34 #4930. MR 0205095 (34:4930)
  • [8] E. G. Effros and F. Hahn, Locally compact transformation groups and $ {C^ \ast }$-algebras, Mem. Amer. Math. Soc. No. 75 (1967). MR 37 #2895. MR 0227310 (37:2895)
  • [9] J. M. G. Fell, Weak containment and induced representations of groups. II, Trans. Amer. Math. Soc. 110 (1964), 424-447. MR 28 #3114. MR 0159898 (28:3114)
  • [10] -, An extension of Mackey's method to Banach $ \ast $-algebraic bundles, Mem. Amer. Math. Soc. No. 90 (1969). MR 41 #4255.
  • [11] J. G. Glimm, Families of induced representations, Pacific J. Math. 12 (1962), 885-911. MR 26 #3819. MR 0146297 (26:3819)
  • [12] F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Math. Studies, no. 16, Van Nostrand, Princeton, N. J., 1969. MR 40 #4776. MR 0251549 (40:4776)
  • [13] -, Amenable actions of locally compact groups, J. Functional Analysis 4 (1969), 295-315. MR 40 #268. MR 0246999 (40:268)
  • [14] R. Howe, The Fourier transform for nilpotent locally compact groups. I (preprint). MR 0492059 (58:11215)
  • [15] S. Lang, Algebraic numbers, Addison-Wesley, Reading, Mass., 1964. MR 28 #3974. MR 0160763 (28:3974)
  • [16] L. H. Loomis, An introduction to abstract harmonic analysis, Van Nostrand, Princeton, N. J., 1953. MR 14, 883. MR 0054173 (14:883c)
  • [17] G. Mackey, Imprimitivity for representations of locally compact groups. I, Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 537-545. MR 11, 158. MR 0031489 (11:158b)
  • [18] -, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101-139. MR 13, 434. MR 0044536 (13:434a)
  • [19] F. J. Murray and J. von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), 116-229. MR 1503275
  • [20] I. E. Segal, A class of operator algebras which are determined by groups, Duke Math. J. 18 (1951), 221-265. MR 13, 534. MR 0045133 (13:534b)
  • [21] M. Takesaki, Covariant representations of $ {C^ \ast }$-algebras and their locally compact automorphism groups, Acta Math. 119 (1967), 273-303. MR 37 #774. MR 0225179 (37:774)
  • [22] G. Zeller-Meier, Produits croisés d'une $ {C^ \ast }$-algèbre par un groupe d'automorphismes, J. Math. Pures Appl. (9) 47 (1968), 101-239. MR 39 #3329. MR 0241994 (39:3329)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22D25, 46L05

Retrieve articles in all journals with MSC: 22D25, 46L05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0302818-X
Keywords: Locally compact transformation group, amenable group, primitive ideal, $ {C^ \ast }$-algebra, kernel of a representation, isotropy subgroup, induced representation, positive-definite measure, weak containment, quasi-orbit, orbit closure
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society