The number of roots in a simply-connected -manifold
Authors:
Robert F. Brown and Ronald J. Stern
Journal:
Trans. Amer. Math. Soc. 170 (1972), 499-505
MSC:
Primary 55D45; Secondary 57A15, 57C15
DOI:
https://doi.org/10.1090/S0002-9947-1972-0307227-5
MathSciNet review:
0307227
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: An -manifold is a triple
where
is a compact connected triangulable manifold without boundary,
, and
is a map such that
for all
. Define
to be the identity map and, for
, define
by
. It is proven that if
is an
-manifold, then
is simply-connected if and only if given
there exists a multiplication
on
homotopic to
such that
implies
for all
.
- [1] R. Brooks, On removing coincidences of two maps when one, rather than both, of them may be deformed by a homotopy, Pacific J. Math. 40 (1972), 45-52. MR 0341470 (49:6221)
- [2]
R. F. Brown, Divisible
-spaces, Proc. Amer. Math. Soc 26 (1970), 185-189. MR 41 #6207. MR 0261594 (41:6207)
- [3] -, The Lefschetz fixed point theorem, Scott, Foresman, Glenview, Ill. 1971. MR 0283793 (44:1023)
- [4]
R. F. Brown and A. Hales, Primitive roots of unity in
-manifolds, Amer. J. Math. 92 (1970), 612-618. MR 0278301 (43:4031)
- [5] H. Hopf, Über den Rang geschlossener Liescher Gruppen, Comment. Math. Helv. 13 (1940), 119-143. MR 3, 35. MR 0004631 (3:35d)
- [6] H. Schirmer, Mindestzahlen von Koinzidenzpunkten, J. Reine Angew. Math. 194 (1955), 21-39. MR 17, 394. MR 0073172 (17:394e)
Retrieve articles in Transactions of the American Mathematical Society with MSC: 55D45, 57A15, 57C15
Retrieve articles in all journals with MSC: 55D45, 57A15, 57C15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1972-0307227-5
Keywords:
-space,
th root,
coincidence-preserving homotopy
Article copyright:
© Copyright 1972
American Mathematical Society