A decomposition for combinatorial geometries
Author:
Thomas H. Brylawski
Journal:
Trans. Amer. Math. Soc. 171 (1972), 235282
MSC:
Primary 05B25
MathSciNet review:
0309764
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A construction based on work by Tutte and Grothendieck is applied to a decomposition on combinatorial pregeometries in order to study an important class of invariants. The properties of this Tutte decomposition of a pregeometry into a subgeometry and contraction is explored in a categorically integrated view using factored strong maps. After showing that direct sum decomposition distributes over the Tutte decomposition we construct a universal pair where is a free commutative ring with two generators corresponding to a loop and an isthmus; and , the Tutte polynomial assigns a ring element to each pregeometry. Evaluations of give the Möbius function, characteristic polynomial, Crapo invariant, and numbers of subsets, bases, spanning and independent sets of and its Whitney dual. For geometries a similar decomposition gives the same information as the chromatic polynomial throwing new light on the critical problem. A basis is found for all linear identities involving Tutte polynomial coefficients. In certain cases including Hartmanis partitions one can recover all the Whitney numbers of the associated geometric lattice from and conversely. Examples and counterexamples show that duals, minors, connected pregeometries, seriesparallel networks, free geometries (on which many invariants achieve their upper bounds), and lower distributive pregeometries are all characterized by their polynomials. However, inequivalence, Whitney numbers, and representability are not always invariant. Applying the decomposition to chain groups we generalize the classical twocolor theorem for graphs to show when a geometry can be imbedded in binary affine space. The decomposition proves useful also for graphical pregeometries and for unimodular (orientable) pregeometries in the counting of cycles and coboundaries.
 [1]
George
D. Birkhoff, A determinant formula for the number of ways of
coloring a map, Ann. of Math. (2) 14 (1912/13),
no. 14, 42–46. MR
1502436, http://dx.doi.org/10.2307/1967597
 [2]
Thomas
H. Brylawski, A combinatorial model for
seriesparallel networks, Trans. Amer. Math.
Soc. 154 (1971),
1–22. MR
0288039 (44 #5237), http://dx.doi.org/10.1090/S00029947197102880397
 [3]
, The Möbius function as decomposition invariant, Proc. Waterloo Conference on Möbius Algebras, 1971, pp. 143148.
 [4]
, The TutteGrothendieck ring (to appear).
 [5]
A. Cayley, A theorem on trees, Quart. J. Math. 23 (1889), 376378.
 [6]
Henry
H. Crapo, A higher invariant for matroids, J. Combinatorial
Theory 2 (1967), 406–417. MR 0215744
(35 #6579)
 [7]
Henry
H. Crapo, Möbius inversion in lattices, Arch. Math.
(Basel) 19 (1968), 595–607 (1969). MR 0245483
(39 #6791)
 [8]
Henry
H. Crapo, The Tutte polynomial, Aequationes Math.
3 (1969), 211–229. MR 0262095
(41 #6705)
 [9]
Henry
H. Crapo, The Möbius function of a lattice, J.
Combinatorial Theory 1 (1966), 126–131. MR 0193018
(33 #1240)
 [10]
Henry
H. Crapo and GianCarlo
Rota, On the foundations of combinatorial theory: Combinatorial
geometries, Preliminary edition, The M.I.T. Press, Cambridge,
Mass.London, 1970. MR 0290980
(45 #74)
 [11]
Juris
Hartmanis, Lattice theory of generalized partitions, Canad. J.
Math. 11 (1959), 97–106. MR 0099931
(20 #6367)
 [12]
D.
A. Higgs, Strong maps of geometries, J. Combinatorial Theory
5 (1968), 185–191. MR 0231761
(38 #89)
 [13]
George
J. Minty, On the axiomatic foundations of the theories of directed
linear graphs, electrical networks and networkprogramming, J. Math.
Mech. 15 (1966), 485–520. MR 0188102
(32 #5543)
 [14]
GianCarlo
Rota, On the foundations of combinatorial theory. I. Theory of
Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete
2 (1964), 340–368 (1964). MR 0174487
(30 #4688)
 [15]
, Hedrick lectures, Math. Assoc. of Amer. Annual Meeting, Toronto, 1967.
 [16]
Richard
P. Stanley, Modular elements of geometric lattices, Algebra
Universalis 1 (1971/72), 214–217. MR 0295976
(45 #5037)
 [17]
W.
T. Tutte, A contribution to the theory of chromatic
polynomials, Canadian J. Math. 6 (1954), 80–91.
MR
0061366 (15,814c)
 [18]
W.
T. Tutte, A ring in graph theory, Proc. Cambridge Philos. Soc.
43 (1947), 26–40. MR 0018406
(8,284k)
 [19]
W.
T. Tutte, Lectures on matroids, J. Res. Nat. Bur. Standards
Sect. B 69B (1965), 1–47. MR 0179781
(31 #4023)
 [20]
, Introduction to the theory of matroids, American Elsevier, New York, 1970.
 [21]
Hassler
Whitney, On the Abstract Properties of Linear Dependence,
Amer. J. Math. 57 (1935), no. 3, 509–533. MR
1507091, http://dx.doi.org/10.2307/2371182
 [1]
 G. D. Birkhoff, A determinant formula for the number of ways of coloring a map, Ann. of Math. (2) 14 (1913), 4246. MR 1502436
 [2]
 T. Brylawski, A combinatorial model for seriesparallel networks, Trans. Amer. Math. Soc. 154 (1971), 122. MR 0288039 (44:5237)
 [3]
 , The Möbius function as decomposition invariant, Proc. Waterloo Conference on Möbius Algebras, 1971, pp. 143148.
 [4]
 , The TutteGrothendieck ring (to appear).
 [5]
 A. Cayley, A theorem on trees, Quart. J. Math. 23 (1889), 376378.
 [6]
 H. Crapo, A higher invariant for matroids, J. Combinatorial Theory 2 (1967), 406417. MR 0215744 (35:6579)
 [7]
 , Möbius inversion in lattices, Arch. Math. (Basel) 19 (1968), 595607. MR 39 #6791. MR 0245483 (39:6791)
 [8]
 , The Tutte polynomial, Aequationes Math. 3 (1969), 211229. MR 41 #6705. MR 0262095 (41:6705)
 [9]
 , The Möbius function of a lattice, J. Combinatorial Theory 1 (1966), 126131. MR 33 #1240. MR 0193018 (33:1240)
 [10]
 H. Crapo and G.C. Rota, Combinatorial geometries, M. I. T. Press, Cambridge Mass., 1970 (preliminary ed.). MR 0290980 (45:74)
 [11]
 J. Hartmanis, Lattice theory of generalized partitions, Canad. J. Math. 11 (1959), 97106. MR 20 #6367. MR 0099931 (20:6367)
 [12]
 D. A. Higgs, Stong maps of geometries, J. Combinatorial Theory 5 (1968), 185191. MR 38 #89. MR 0231761 (38:89)
 [13]
 G. J. Minty, On the axiomatic foundations of the theories of directed linear graphs, electrical networks and network programming, J. Math. Mech. 15 (1966), 485520. MR 32 #5543. MR 0188102 (32:5543)
 [14]
 G.C. Rota, On the foundations of combinatorial theory. I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340368. MR 30 #4688. MR 0174487 (30:4688)
 [15]
 , Hedrick lectures, Math. Assoc. of Amer. Annual Meeting, Toronto, 1967.
 [16]
 R. Stanley, Modular elements of geometric lattices, Algebra Universalis 1 (1971), 214217. MR 0295976 (45:5037)
 [17]
 W. T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math. 6 (1954), 8091. MR 15, 814. MR 0061366 (15:814c)
 [18]
 , A ring in graph theory, Proc. Cambridge Philos. Soc. 43 (1947), 2640. MR 8, 284. MR 0018406 (8:284k)
 [19]
 , Lectures on matroids, J. Res. Nat. Bur. Standards Sect. B 69B (1965), 147. MR 31 #4023. MR 0179781 (31:4023)
 [20]
 , Introduction to the theory of matroids, American Elsevier, New York, 1970.
 [21]
 H. Whitney, On the abstract properties of linear dependence, Amer. J. Math 57 (1935), 509533. MR 1507091
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
05B25
Retrieve articles in all journals
with MSC:
05B25
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197203097646
PII:
S 00029947(1972)03097646
Article copyright:
© Copyright 1972
American Mathematical Society
